Kintinuous + Elastic Fusion 配置运行方法

系统:Ubuntu 14

Kintinuous + Elastic Fusion代码来源:https://github.com/mp3guy


准备工作


安装git

sudo apt-get install git
git config --global user.name 你的git username
git config --global user.email 你的邮箱


安装cmake
直接在ubuntu软件中心下载安装,但是配置Elastic Fusion需要升级到3.2,否则自带的是2.8
参考:http://askubuntu.com/questions/610291/how-to-install-cmake-3-2-on-ubuntu-14-04
sudo apt-get install build-essential
wget http://www.cmake.org/files/v3.2/cmake-3.2.2.tar.gz
tar xf cmake-3.2.2.tar.gz
cd cmake-3.2.2
./configure
make
sudo make install
运行cmake --version查看版本
如果提示找不到bin/cmake,那么sudo apt-get upgrade就可以了


配置Kinect运行环境(一个参考,实际上我并没有用Kinect跑,最后用的是Xtion)

参考:http://www.cc.gatech.edu/grads/a/ahuaman3/docs/tutorials/software/build/perception.html
OpenNI2安装:
sudo apt-get install g++
sudo apt-get install python
sudo apt-get install libusb-1.0-0-dev
sudo apt-get install libudev-dev
sudo apt-get install openjdk-6-jdk
sudo apt-get install freeglut3-dev
sudo apt-get install graphviz
sudo apt-get install doxygen
git clone https://github.com/occipital/OpenNI2
cd OpenNI2
make
更改kinect rules:以root权限改动/etc/udev/rules.d/51-kinect.rules (暂时获得root权限:sudo nautilus,在弹出的文件夹中进行改动)
在其中加入:
UBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02b0", MODE:="0666", OWNER:="root", GROUP:="video"
SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02ad", MODE:="0666", OWNER:="root", GROUP:="video"
SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02ae", MODE:="0666", OWNER:="root", GROUP:="video"
SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02c2", MODE:="0666", OWNER:="root", GROUP:="video"
SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02be", MODE:="0666", OWNER:="root", GROUP:="video"
SUBSYSTEM=="usb", ATTR{idVendor}=="045e", ATTR{idProduct}=="02bf", MODE:="0666", OWNER:="root", GROUP:="video"

libfreenect安装:
git clone https://github.com/OpenKinect/libfreenect.git
cd libfreenect
mkdir build; cd build
cmake .. -DBUILD_OPENNI2_DRIVER=ON
make
cp -L lib/OpenNI2-FreenectDriver/libFreenectDriver.so ${OPENNI2_DIR}/Bin/x64-Release/OpenNI2/Drivers   #将驱动拷贝到OpenNI2的解压文件夹下,OPENNI2_DIR:OpenNI2的解压文件夹

插上kinect后,使用lsusb命令查看确保有以下三个:
Xbot camera
Xbot motor
Xbot audio

安装成功检查:
cd ${OPENNI2_DIR}/Bin/x64-Release/
./NiViewer


配置Kintinuours运行环境


git clone https://github.com/mp3guy/Kintinuous

1.新系统:
找到build.sh,在属性中设置为可执行
./build.sh
等待配置成功

2.非新系统:


安装CUDA:

下载deb文件 https://developer.nvidia.com/cuda-downloads

sudo dpkg -i cuda-repo-ubuntu1404_7.5-18_amd64.deb
sudo apt-get update
sudo apt-get install cuda
sudo reboot
查看是否成功运行cuda
cd /usr/local/cuda/samples
sudo make all -j4
cd /usr/local/cuda/samples/bin/x86_64/linux/release
sudo ./deviceQuery
成功之后会出现下列信息:
    CUDA Device Query (Runtime API) version (CUDART static linking)
    Detected 1 CUDA Capable device(s)

我在这里遇到了一定问题,找了很久,发现是Secure Boot没关掉,关掉之后就好了。解决的流程如下:

运行deviceQuery:no capable device
尝试解决:
1.怀疑是内核问题
add in: GRUB_CMDLINE_LINUX_DEFAULT with: pci=nocrs pci=realloc
依然:no capable device
2.装最新的nvidia 367
新问题:CUDA driver version is insufficient for CUDA runtime version
3.查看当前的kernel版本
kernel:3.19.0-65-generic
4.查看一些参数
sudo dpkg --list | grep nvidia
lspci | grep -i nvidia   设备里的确有nvidia显卡
lsmod  发现video一览只有i915_bpo,说明nvidia独显并没有被启用
sudo modprobe nvidia-367  手动启用nvidia显卡,提示ERROR: could not insert 'nvidia_367': Required key not available
终于找到问题:不是显卡驱动没装好,而是无法启动显卡(被BIOS禁了?)
5.装回nvidia 352
sudo apt-get remove --purge nvidia-*
(***提示cmake-qt-gui依赖cmake 2.8出错,卸载cmake-qt-gui。卸载后cmake命令没出错,其他情况会不会出错有待观察)
sudo add-apt-repository ppa:xorg-edgers/ppa -y
sudo apt-get update
sudo apt-get install nvidia-352
6.查看安装的版本
sudo dpkg --list | grep nvidia
ii  nvidia-352                    352.93-0ubuntu1                     amd64        NVIDIA binary driver - version 352.93
ii  nvidia-modprobe               352.93-0ubuntu1                     amd64        Load the NVIDIA kernel driver and create device files
ii  nvidia-opencl-icd-352         352.93-0ubuntu1                     amd64        NVIDIA OpenCL ICD
ii  nvidia-prime                  0.6.2                               amd64        Tools to enable NVIDIA's Prime
ii  nvidia-settings               367.35-0ubuntu0~gpu14.04.1          amd64        Tool for configuring the NVIDIA graphics driver
安装正确,运行devieQuery依然提示no device found,回到原点
7.现在的问题:
sudo modprobe nvidia-352  手动启用nvidia显卡,提示ERROR: could not insert 'nvidia_352': Required key not available
网上给出的解决方法:turn off the secure boot feature of the motherboard
8.尝试解决:开机F12,secure boot勾选为disable,legacy勾选
sudo modprobe nvidia-352   成功!
nvidia-settings  显示独显成功!
deviceQuery  检测到显卡!应该可以了!
9.新问题:kinect无法连接了。。。(之前是可以的)
lsusb   能看到XBOX的三个设备
从头重新配置,发现有几个依赖包没有安装(可能之前哪一步把他卸载了)
sudo apt-get install openjdk-6-jdk
sudo apt-get install graphviz
sudo apt-get install doxygen
之后NiViewer可以正常运行了







安装依赖项:

sudo apt-get install -y cmake-qt-gui git build-essential libusb-1.0-0-dev libudev-dev openjdk-7-jdk freeglut3-dev python-vtk libvtk-java libglew-dev cuda-7-5 libsuitesparse-dev

安装pcl:
sudo add-apt-repository ppa:v-launchpad-jochen-sprickerhof-de/pcl
sudo apt-get update
sudo apt-get install libpcl-all

安装opengl:
sudo apt-get install build-essential
sudo apt-get install libgl1-mesa-dev
sudo apt-get install libgl1-mesa-dev
sudo apt-get install libglu1-mesa-dev
sudo apt-get install freeglut3-dev

安装opencv:
(不可以直接在ubuntu的apt-get里面获取opencv,因为ubuntu提供的opencv没有nonfree模块)
下载http://opencv.org/downloads.html
sudo apt-get install build-essential libgtk2.0-dev libjpeg-dev libtiff4-dev libjasper-dev libopenexr-dev cmake python-dev python-numpy python-tk libtbb-dev libeigen2-dev yasm libfaac-dev libopencore-amrnb-dev libopencore-amrwb-dev libtheora-dev libvorbis-dev libxvidcore-dev libx264-dev libqt4-dev libqt4-opengl-dev sphinx-common texlive-latex-extra libv4l-dev libdc1394-22-dev libavcodec-dev libavformat-dev libswscale-dev
unzip opencv-2.4.9.zip
cd opencv-2.4.9
mkdir build
cd build
cmake -D BUILD_NEW_PYTHON_SUPPORT=OFF -D WITH_OPENCL=OFF -D WITH_OPENMP=ON -D INSTALL_C_EXAMPLES=OFF -D BUILD_DOCS=OFF -D BUILD_EXAMPLES=OFF -D WITH_QT=OFF -D WITH_OPENGL=OFF -D WITH_VTK=OFF -D BUILD_PERF_TESTS=OFF -D BUILD_TESTS=OFF -D WITH_CUDA=OFF -D BUILD_opencv_gpu=OFF ..
make
sudo make install


安装Dlib:
sudo apt-get install libboost-dev
git clone https://github.com/dorian3d/DLib
cd DLib/build
cmake ..
make
sudo make install

安装DBoW2:

git clone https://github.com/dorian3d/DBoW2#dbow2
cd DBoW2/build
cmake ..
make
sudo make install

安装DLoopDetector:

git clone https://github.com/dorian3d/DLoopDetector
cd DLoopDetector/build
cmake ..
make
sudo make install

安装iSAM:

svn co https://svn.csail.mit.edu/isam
cd isam
make

安装Pangolin:
sudo apt-get install libglew-dev
sudo apt-get install libboost-dev libboost-thread-dev libboost-filesystem-dev
sudo apt-get install libpython2.7-dev
sudo apt-get install ffmpeg libavcodec-dev libavutil-dev libavformat-dev libswscale-dev
sudo apt-get install libdc1394-22-dev libraw1394-dev
sudo apt-get install libjpeg-dev libpng12-dev libtiff5-dev libopenexr-dev
git clone https://github.com/stevenlovegrove/Pangolin
cd Pangolin/build
cmake -DCPP11_NO_BOOST=1 ..
make -j

运行Kintinuous:

作者的一些说明:
The GUI (Kintinuous) can take a bunch of parameters when launching it from the command line. They are as follows:
    -c : Loads a camera calibration file specified by a depth_intrinsics matrix in OpenCV format.
    -l : Processes the specified .klg log file.
    -v : Loads DBoW vocabulary file.
    -p : Loads ground truth poses to use instead of estimated pose.
    -gpu : Sets which GPU should be used by CUDA.
    -n : Number of frames to process.
    -t : Voxel threshold for volume shifting (default 14).
    -cw : Removes voxels below this threshold when extracting slices (default 8).
    -lt : Disallow loop closures within this time period of the last (default 30s).
    -s : Size of the fusion volume (default 6m).
    -dg : Rate of pose sampling for deformation (default 0.8m).
    -il : Inlier threshold for RANSAC (default 0.35).
    -it : Residual threshold for pose graph optimisation (default 10).
    -sm : Static mode (disable volume shifting).
    -f : Flip RGB/BGR.
    -od : Perform online deformation (required for loop closure).
    -m : Enable mesh generation.
    -no : Disable overlap of extracted slices.
    -nos : Remove overlap when saving map.
    -r : Use RGB tracking only.
    -ri : Use combined ICP+RGB tracking.
    -d : Enable dynamic cube positioning.
    -dc : Disable color weighting by angle.
    -fl : Subsample pose graph for faster loop closure.
    -fod : Enable fast odometry.

以上所有配置以后就可以正常运行kintinuous了,运行的命令可以看上面的作者说明,比如:

./Kintinuous   

  # try run off an attached ASUS sensor live. You can provide a .klg log file instead with the -l parameter. You can capture .klg format logs using either Logger1 or Logger2.

默认从华硕Xtion中读取图像,如果没有Xtion则会报错找不到设备

没有话说Xtion的可以试试作者给的几个log,在原网址上有下载。

使用log的运行方法如下:

./Kintinuous -s 7 -v ../vocab.yml.gz -l loop.klg -ri -fl -od  

  # author has provided a sample dataset loop.klg which you can run easily with Kintinuous


配置ElasticFusion

准备工作和相关的依赖项包括开源包的配置方法和KIntinous一样,只需要额外安装开源包openni2

安装OpenNI2:
git clone https://github.com/occipital/OpenNI2.git
cd OpenNI2
make -j8
cd ..

生成 ./ElasticFusion

注意源码里有三个项目,Core、GPUTest和GUI

如果要使用作者的程序,则需要把三个项目安装顺序依次配置成功

cd ../Core
mkdir build
cd build
cmake -D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-7.5 ../src
make -j8
cd ../../GPUTest
mkdir build
cd build
cmake -D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-7.5 ../src
make -j8
cd ../../GUI
mkdir build
cd build
cmake -D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-7.5 ../src
make -j8
cd ../../myfusion
mkdir build
cd build
cmake -D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-7.5 ../src
make -j8
之后就能在GUI/build中看到可执行项ElasticFusion

直接调用以下命令,默认从华硕Xtion中获取图像并开始三位重建

./ElasticFusion

也可以使用参数控制,一些Elastci Fusion的运行参数如下:

  • -cal : Loads a camera calibration file specified as fx fy cx cy. 载入相机参数(默认参数为华硕Xtion的参数)
  • -l : Processes the specified .klg log file. 不使用摄像头读取,使用log文件模拟相机的图像采集过程
  • -p : Loads ground truth poses to use instead of estimated pose. 读取ground truth的位姿来作为三位重建的依据之一(默认会自动估计当前的位置,如果传入ground truth的位姿则直接使用传入的位姿)
  • -c : Surfel confidence threshold (default 10). Surfel的信任阈值
  • -d : Cutoff distance for depth processing (default 3m). 多少距离以上的深度数据视为无用数据(单位mm,默认为3000,即3m)
  • -i : Relative ICP/RGB tracking weight (default 10). ICP/RGB的tracking阈值
  • -ie : Local loop closure residual threshold (default 5e-05).
  • -ic : Local loop closure inlier threshold (default 35000).
  • -cv : Local loop closure covariance threshold (default 1e-05).
  • -pt : Global loop closure photometric threshold (default 115).
  • -ft : Fern encoding threshold (default 0.3095). 关键帧编码阈值
  • -t : Time window length (default 200).
  • -s : Frames to skip at start of log. 如果使用log,跳过初始帧的数目
  • -e : Cut off frame of log.
  • -f : Flip RGB/BGR.
  • -icl : Enable this if using the ICL-NUIM dataset (flips normals to account for negative focal length on that data).
  • -o : Open loop mode.
  • -rl : Enable relocalisation.
  • -fs : Frame skip if processing a log to sim
  • ulate real-time.
  • -q : Quit when finished a log.
  • -fo : Fast odometry (single level pyramid).
  • -nso : Disables SO(3) pre-alignment in tracking.
  • -r : Rewind and loop log forever.
  • -ftf : Do frame-to-frame RGB tracking.
  • -sc : Showcase mode (minimal GUI).

使用Elastic Fusion的CoreAPI

作者还提供了使用他的Core作为基础库的方法。

首先编译Core项目

cd ../Core
mkdir build
cd build
cmake -D CUDA_TOOLKIT_ROOT_DIR=/usr/local/cuda-7.5 ../src
make -j8

然后在CMakelist.txt中加入

find_package(efusion REQUIRED)
include_directories(${EFUSION_INCLUDE_DIR})
target_link_libraries(MyProject ${EFUSION_LIBRARY})

在头文件中加入

#include 


初始化

Resolution::getInstance(640, 480); #图像大小
Intrinsics::getInstance(528, 528, 320, 240); #相机参数
pangolin::Params windowParams; #GUI窗口
windowParams.Set("SAMPLE_BUFFERS", 0);
windowParams.Set("SAMPLES", 0);
pangolin::CreateWindowAndBind("Main", width, height, windowParams);
glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
glPixelStorei(GL_PACK_ALIGNMENT, 1);

使用封装好的ElasticFusion类,可以精确定义每一个参数

默认的构造函数

ElasticFusion eFusion; 

精确定义每一个参数后调用构建函数

float confidence = 10.0f; //fusion的confidence阈值
float depth = 3.0f; //去掉depth大于某个阈值的帧
float icp = 10.0f; //icp的阈值
float icpErrThresh = 5e-05; //icp错误阈值
float covThresh = 1e-05;
float photoThresh = 115;
float fernThresh = 0.3095f; //新fern的阈值
int timeDelta = 200;
int icpCountThresh = 35000;
bool openLoop = 0; //open loop模式:不开启
bool iclnuim = 0; //使用icl dataset:不使用
bool reloc = 0; //重定位模式:不开启
bool fastOdom = 0; //Fast odometry (single level pyramid) mode :不开启
bool so3 = 1; //SO(3) pre-alignment in tracking:开启
bool frameToFrameRGB = 0; //只做rgb图像的tracking:不开启
int timestamp = 0;
std::string savefilename = "test";
ElasticFusion eFusion(openLoop ? std::numeric_limits::max() / 2 : timeDelta,icpCountThresh, icpErrThresh, covThresh, !openLoop, iclnuim, reloc,photoThresh, confidence, depth, icp, fastOdom, fernThresh, so3,frameToFrameRGB, savefilename);


 
  

处理输入帧:

eFusion.processFrame(rgb, depth, timestamp, currentPose, weightMultiplier);

其中rgb为uchar*,depth为ushor*,timestamp为时间戳(不重要),剩下两个为可选参数

可选参数1:currentPose——先验的current pose,比如传入了标定好的ground truth三维坐标数据,则可以用上一时刻和这一时刻的三位坐标来估计相机姿态

     Eigen::Matrix4f * currentPose;//当前的位姿
     currentPose = new Eigen::Matrix4f;
     currentPose->setIdentity();
     *currentPose = groundTruthOdometry->getTransformation(timestamp); }
     eFusion.processFrame(rgb, depth, timestamp, currentPose, weightMultiplier);
     delete currentPose;  

可选参数2:weightMultiplier (full frame fusion weight)——默认为1.f  可以自己调整,比如针对前面跳过的帧数对参数进行调整

float weightMultiplier = framesToSkip + 1;
eFusion.processFrame(rgb, depth, timestamp, currentPose, weightMultiplier);



一个简单的使用CoreAPI的程序:

#include "myfusion_base.h"

int main() {

	//图像的尺寸以及相机参数
	int width = 640;
	int height = 480;
	int camera_fx = 528;
	int camera_fy = 528;
	int camera_cx = 320;
	int camera_cy = 240;

	cout << "Initializing ..." << endl;
	Resolution::getInstance(width, height);
	Intrinsics::getInstance(camera_fx, camera_fy, camera_cx, camera_cy);
	cout << "Initializing done." << endl;

	cout << "Setting parameters..." << endl;
	float confidence = 10.0f; //fusion的confidence阈值
	float depth = 3.0f; //去掉depth大于某个阈值的帧
	float icp = 10.0f; //icp的阈值
	float icpErrThresh = 5e-05; //icp错误阈值
	float covThresh = 1e-05;
	float photoThresh = 115;
	float fernThresh = 0.3095f; //新fern的阈值
	int timeDelta = 200;
	int icpCountThresh = 35000;
	//int start = 1;
	//int end = std::numeric_limits::max(); //Funny bound, since we predict times in this format really!
	bool openLoop = 0; //open loop模式:不开启
	bool iclnuim = 0; //使用icl dataset:不使用
	bool reloc = 0; //重定位模式:先做重建,不开启重定位
	bool fastOdom = 0; //Fast odometry (single level pyramid) mode :不开启
	bool so3 = 1; //SO(3) pre-alignment in tracking:开启
	bool frameToFrameRGB = 0; //只做rgb图像的tracking:不开启
	int timestamp = 0;
	std::string savefilename = "test";
	cout << "Setting parameters done." << endl;

	cout << "Building eFusion..." << endl;
	pangolin::Params windowParams;
	windowParams.Set("SAMPLE_BUFFERS", 0);
	windowParams.Set("SAMPLES", 0);
	pangolin::CreateWindowAndBind("Main", width, height, windowParams);
	glPixelStorei(GL_UNPACK_ALIGNMENT, 1);
	glPixelStorei(GL_PACK_ALIGNMENT, 1);
	ElasticFusion eFusion(
			openLoop ? std::numeric_limits::max() / 2 : timeDelta,
			icpCountThresh, icpErrThresh, covThresh, !openLoop, iclnuim, reloc,
			photoThresh, confidence, depth, icp, fastOdom, fernThresh, so3,
			frameToFrameRGB, savefilename);
	cout << "Building eFusion done" << endl;

	//待处理文件的位置和下标
	std::string filedir = "../pic/";
	int file_start = 1;
	int file_end = 782;

	
		vector pose;
		//三位重建
		for (int file_ptr = file_start; file_ptr <= file_end; file_ptr = file_ptr +1) {
			cout << "Processing frame : "< eFusion.confidenceThreshold) {
	 //这是个有效的顶点,validCount++;
	 }
	 }//调用点云中的每一个点
	 */

	cout << "saving cloud points..." << endl;
	eFusion.savePly();			 //保存当前的点云图至ply
	cout << "cloud point has saved to " << savefilename << ".ply" << endl;

	return 0;
}

FRAME readFrame(int index, std::string filedir) {
    FRAME f;
    // 文件目录
    string rgbDir = filedir + "rgb/";
    string depthDir = filedir + "depth/";
    // 文件后缀
    string rgbExt = ".png";
    string depthExt = ".png";
    stringstream ss;
    // 读rgb图
    ss << rgbDir << index << rgbExt;
    string filename;
    ss >> filename;
    f.rgb_mat = cv::imread(filename);
    f.rgb = f.rgb_mat.data;
    // 读depth图
    ss.clear();
    filename.clear();
    ss << depthDir << index << depthExt;
    ss >> filename;
    f.dep_mat = cv::imread(filename, -1);
    f.dep = (unsigned short*) f.dep_mat.data;
    f.frameID = index;

    return f;
} 





 

你可能感兴趣的:(SLAM)