- 【论文阅读笔记】TimesURL: Self-supervised Contrastive Learning for Universal Time Series
少写代码少看论文多多睡觉
#论文阅读笔记论文阅读笔记
TimesURL:Self-supervisedContrastiveLearningforUniversalTimeSeriesRepresentationLearning摘要 学习适用于多种下游任务的通用时间序列表示,并指出这在实际应用中具有挑战性但也是有价值的。最近,研究人员尝试借鉴自监督对比学习(SSCL)在计算机视觉(CV)和自然语言处理(NLP)中的成功经验,以解决时间序列表示的问题。
- Prompt相关论文阅读(02)--Auto-CoT(2024-11-25)
zhilanguifang
论文promptengineering论文阅读笔记
论文阅读笔记2024-11-24~2024-11-25Auto-CoT:AutomaticChainofThoughtPromptinginLargeLanguageModels(ICLR2023)碎碎念:复现代码和笔记保存到gitee仓库上海交通大学的学生在亚马逊实习的时候的成果ICLR2023摘要:LLM能够通过生成中间推理步骤执行复杂的推理。提供这些步骤用于提示演示叫做思维链提示CoT。Co
- 【论文阅读笔记】《CodeS: Towards Building Open-source Language Models for Text-to-SQL 》
柠石榴
text2sql论文论文阅读笔记语言模型
文章目录一、论文基本信息1.文章标题2.所属刊物/会议3.发表年份4.作者列表5.发表单位二、摘要三、解决问题四、创新点五、自己的见解和感想六、研究背景七、研究方法模型实验数据评估指标八、总结九、相关重要文献一、论文基本信息1.文章标题CodeS:TowardsBuildingOpen-sourceLanguageModelsforText-to-SQL2.所属刊物/会议未明确标注(会议缩写为“C
- 【论文阅读笔记】HaDes幻觉检测benchmark
zsq
论文分享论文阅读笔记NLP大语言模型幻觉
0论文信息题目:AToken-levelReference-freeHallucinationDetectionBenchmarkforFree-formTextGeneration作者:TianyuLiu,YizheZhang,ChrisBrockett,YiMao,ZhifangSui,WeizhuChen,BillDolan会议:ACL,2022链接:https://arxiv.org/ab
- 论文阅读笔记—— Multi-attentional Deepfake Detection
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录Multi-attentionalDeepfakeDetection背景创新贡献方法注意图正则化的区域独立性损失注意力引导的数据增强实验Multi-attentionalDeepfakeDetection来源:CVPR2021作者:HanqingZhao1WenboZhou1,†DongdongChen2TianyiWei1WeimingZhang1,†NenghaiYu1单位:Unive
- [论文阅读笔记] Learning Transferable Visual Models From Natural Language Supervision
Heartache Doctor
笔记论文阅读笔记
Abstract将LLM带来的语言zero-shot能力扩展到图像领域,让图像pretrain不再局限于由数据集定义的类别,从而大幅度提升在downstream任务zero-shot的精度。文章提供了从零预训练的CLIP模型,用以训练的大数据集,以及基于对比学习的对齐方案。IntroductionNLP领域下,使用大量数据pretrain>使用高质量标注数据集。→\rightarrow→CV是否也
- GLIDE论文阅读笔记与DDPM(Diffusion model)的原理推导
大写-凌祁
论文阅读笔记人工智能深度学习python机器学习计算机视觉
Abstract扩散模型(Diffusionmodel)最近被证明可以生成高质量的合成图像,尤其是当它们与某种引导技术结合使用时,可以在生成结果的多样性与保真度之间进行权衡。本文探讨了在文本条件图像生成任务中使用扩散模型,并比较了两种不同的引导策略:CLIP引导和无分类器引导。我们发现,人类评估者更倾向于使用无分类器引导方法,无论是在照片真实感还是与文本描述的匹配度方面,该方法通常都能生成具有高度
- 论文阅读笔记——FLOW MATCHING FOR GENERATIVE MODELING
寻丶幽风
Background论文阅读笔记流匹配扩散模型人工智能
FlowMatching论文扩散模型:根据中心极限定理,对原始图像不断加高斯噪声,最终将原始信号破坏为近似的标准正态分布。这其中每一步都构造为条件高斯分布,形成离散的马尔科夫链。再通过逐步去噪得到原始图像。Flowmatching采取直接将已知分布(如白噪声)转换为真实数据分布来生成数据,并且Flow是基于NormalizingFlow,故而是可微双射。生成过程中变化的概率密度构成一个集合,称为概
- 论文阅读笔记——Step1X-Edit: A Practical Framework for General Image Editing
寻丶幽风
论文阅读笔记论文阅读笔记理解生成模型多模态人工智能
Step1X-Edit论文当前图像编辑数据集规模小,质量差,由此构建了如下数据构造管线。高质量三元组数据(源图像、编辑指令、目标图像)。主体添加与移除:使用Florence-2对专有数据集标注,然后使用SAM2进行分割,再使用ObjectRemovalAlpha进行修复。编辑指令结合Step-1o和GPT-4o生成,然后人工审查有效性。主体替换与背景更改:使用Florence-2对专有数据集标注,
- 论文阅读笔记——Nexus-Gen: A Unified Model for Image Understanding, Generation, and Editing
寻丶幽风
论文阅读笔记论文阅读笔记多模态理解生成自回归扩散模型
Nexus-Gen论文Nexus-Gen采用预测图像嵌入作为中间条件,链接自回归模型和扩散模型,通过预填充自回归避免嵌入误差传播,突破传统外界LLM因条件压缩导致信息丢失,提高理解生成模型在理解任务和生成任务上的性能表现。传统的图像生成任务往往局限于Text-to-Image场景,模型侧重于图像质量或局部内容填充。而Nexus-Gen的架构设计突破了这一范式,不仅具备高质量图像生成能力,还可以执行
- 论文阅读笔记——PixArt-α,PixArt-δ
寻丶幽风
论文阅读笔记论文阅读笔记T2I扩散模型文生图
PixArt-αPixArt-α论文仅使用28400美元,28M训练数据,训练时长为SD1.5的10.8%,只有0.6B参数量,达到接近商业应用的水准。现有数据集存在的缺陷:图文匹配偏差、描述信息不完整、词汇多样性不足(长尾效应显著)、低质量数据。为了实现低成本训练,华为采用了三阶段的训练策略:第一个阶段是学习像素依赖关系,简单来说是先学习生成真实的图像,这里是用ImageNet数据集训练一个基于
- 《XMK-CKKS: Extended Multiple Key Homomorphic Encryption over CKKS》 论文阅读笔记
stupidyccc
同态加密论文阅读笔记安全
《XMK-CKKS:ExtendedMultipleKeyHomomorphicEncryptionoverCKKS》中科院2区总结提出了xMK-CKKS,一种多密钥同态方案。客户端使用聚合公钥加密梯度,解密的时候需要所有客户端提供解密份额,协助服务器解密总和。基于FadAvg和XMK-CKKS提出一个ppfl模型。在半诚实模型下可以防止n-1个客户端和服务器的勾结。xMK-CKKS###setu
- Adversarial examples based on object detection tasks: A survey》论文阅读笔记
2301_80355452
目标检测论文阅读笔记
这是一篇关于目标检测任务中对抗样本攻击的综述论文。文章介绍了深度学习在计算机中的应用,以及对抗样本攻击的相关概念和方法,其中重点讨论了目标检测任务中基于分类和回归的对抗样本攻击,并对其他相关攻击方法进行了总结,最后得出结论并展望未来研究方向。1.引言深度学习背景:深度学习在处理图像或视频数据方面具有优势,广泛应用于计算机视觉任务,但由于深度网络的复杂结构,其存在脆弱性,容易受到攻击。目标检测任务:
- 论文阅读笔记—— AdvFilter: Predictive Perturbation-aware Filtering against Adversarial Attack via Multi-d L
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录AdvFilter:PredictivePerturbation-awareFilteringagainstAdversarialAttackviaMulti-domainLearning背景贡献相关工作对抗性去噪防御对抗性训练防御其他对抗性防御方法一般图像去噪创新公式方法多域学习实验AdvFilter:PredictivePerturbation-awareFilteringagains
- 【论文阅读笔记】Attention Is All You Need
时光机゚
论文阅读笔记
论文小结 这是17年的老论文了,Transformer的出处,刚发布时的应用场景是文字翻译。BLUE是机器翻译任务中常用的一个衡量标准。 在此论文之前,序列翻译的主导模型是RNN或者使用编解码器结构的CNN。本文提出的Transformer结构不需要使用循环和卷积结构,是完全基于注意力机制的模型。Transformer在序列转换上具有高并行度,在两个机器翻译的任务上都得到了卓越的成果,且其训练
- 论文阅读笔记——MAGICDRIVE: STREET VIEW GENERATION WITH DIVERSE 3D GEOMETRY CONTROL
寻丶幽风
论文阅读笔记论文阅读笔记3d人工智能自动驾驶
MagicDrive论文MagicDrive通过对3D数据和文本数据的多模态条件融合和隐式视角转换,实现了高质量、多视角一致的3D场景生成。几何条件编码Cross-attention:针对顺序数据,适合处理文本标记和边界框等可变长度输入。Additiveencoderbranch:对于地图等网络状规则数据,能够有效保留空间结构。对于文本按照模版构建:“Adrivingsceneat{locatio
- GS-SLAM论文阅读笔记-MGSO
zenpluck
GS论文阅读论文阅读笔记
前言MGSO首字母缩略词是直接稀疏里程计(DSO),我们建立的光度SLAM系统和高斯飞溅(GS)的混合。这应该是第一个前端用DSO的高斯SLAM,不知道这个系统的组合能不能打得过ORB-SLAM3,以及对DSO会做出怎么样的改进以适应高斯地图,接下来就看一下吧!GishelloG^s_ihelloGishello我是红色文章目录前言1.背景介绍2.关键内容2.1SLAMmodule2.2Dense
- 论文阅读笔记——QLORA: Efficient Finetuning of Quantized LLMs
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习语言模型
QLoRA论文4-bit标准浮点数量化常见的量化技术是最大绝对值量化:XInt8=round(127absmax(XFP32)XFP32)=round(cFP32,XFP32)式(1)X^{Int8}=round(\frac{127}{absmax(X^{FP32})}X^{FP32})=round(c^{FP32},X^{FP32})\qquad\qquad\text{式(1)}XInt8=ro
- 论文阅读笔记:Graph Matching Networks for Learning the Similarity of Graph Structured Objects
游离态GLZ不可能是金融技术宅
知识图谱机器学习深度学习人工智能
论文做的是用于图匹配的神经网络研究,作者做出了两点贡献:证明GNN可以经过训练,产生嵌入graph-leve的向量可以用于相似性计算。作者提出了一种新的基于注意力的跨图匹配机制GMN(cross-graphattention-basedmatchingmechanism),来计算出一对图之间的相似度评分。(核心创新点)论文证明了该模型在不同领域的有效性,包括具有挑战性的基于控制流图(control
- 论文阅读笔记——π0: A Vision-Language-Action Flow Model for General Robot Control
寻丶幽风
论文阅读笔记论文阅读笔记人工智能机器人语言模型
π0论文π0π_0π0是基于预训练的VLM模型增加了actionexpert,并结合了flowmatching方法训练的自回归模型,能够直接输出模型的actionchunk(50)。π0采用FlowMatching技术来建模连续动作的分布,这一创新使模型能够精确控制高频率的灵巧操作任务,同时具备处理多模态数据的能力。架构受到Transfusion的启发:通过单一Transformer处理多目标任务
- 论文阅读笔记——Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware
寻丶幽风
论文阅读笔记论文阅读笔记人工智能深度学习机器人
ALOHA论文ALOHA解决了策略中的错误可能随时间累积,且人类演示可能是非平稳的,提出了ACT(ActionChunkingwithTransformers)方法。ActionChunking模仿学习中,compoundingerror是致使任务失败的主要原因。具体来说,当智能体(agent)在测试时遇到训练集中未见过的情况时,可能会产生预测误差。这些误差会逐步累积,导致智能体进入未知状态,最终
- Self-Attentive Sequential Recommendation论文阅读笔记
调包调参侠
推荐系统学习深度学习机器学习神经网络算法
SASRec论文阅读笔记论文标题:Self-AttentiveSequentialRecommendation发表于:2018ICDM作者:Wang-ChengKang,JulianMcAuley论文代码:https://github.com/pmixer/SASRec.pytorch论文地址:https://arxiv.org/pdf/1808.09781v1.pdf摘要顺序动态是许多现代推荐系
- 论文阅读笔记2
sixfrogs
论文阅读笔记论文阅读cnn
OptimizingMemoryEfficiencyforDeepConvolutionalNeuralNetworksonGPUs1论文简介作者研究了CNN各层的访存效率,并揭示了数据结构和访存模式对CNN的性能影响。并提出了优化方法。2方法介绍2.1Benchmarks数据集:MNIST,CIFAR,ImageNetCNN:AlexNet,ZFNet,VGG2.2实验设置CPU:IntelXe
- 大模型隐空间推理论文阅读笔记
猴猴猪猪
AIGCpython实验记录人工智能深度学习
文章目录TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介1.1摘要1.2引言TrainingLargeLanguageModelstoReasoninaContinuousLatentSpace一.简介机构:Meta代码:任务:特点:方法:1.1摘要现状:大语言模型往往局限在“languagespace"进行推理,在解决
- 【网安AIGC专题】46篇前沿代码大模型论文、24篇论文阅读笔记汇总_大模型在代码缺陷检测领域的应用实践(1)
2401_84972910
程序员AIGC论文阅读笔记
欢迎一起踏上探险之旅,挖掘无限可能,共同成长!写在最前面本文为邹德清教授的《网络安全专题》课堂笔记系列的文章,本次专题主题为大模型。本系列文章不仅涵盖了46篇关于前沿代码大模型的论文,还包含了24篇深度论文阅读笔记,全面覆盖了代码生成、漏洞检测、程序修复、生成测试等多个应用方向,深刻展示了这些技术如何在网络安全领域中起到革命性作用。同时,本系列还细致地介绍了大模型技术的基础架构、增强策略、关键数据
- 论文阅读笔记——Prediction with Action: Visual Policy Learning via Joint Denoising Process
寻丶幽风
论文阅读笔记论文阅读笔记人工智能
以前的method是输入视频输出视频或者输入视频和action学习action,该方法认为action,video和othercondition具有一定联系,所以一次性对所有的进行jointdenoise。网络结构采用MaskedMulti-headAttention关联不同模态,使用DiT的backbone。
- 深度学习重要论文阅读笔记 ResNet (2025.2.26)
北岛寒沫
逐界星辰2025计算机科研深度学习论文阅读笔记
文章目录问题背景数据预处理神经网络模型模型性能知识点积累英语单词积累问题背景随着神经网络变得更深(层数变多),模型的训练过程也会变得更加困难。当神经网络的深度增加,就会出现梯度消失和梯度下降现象,妨碍模型的收敛。不过,这种情况可以通过归一化的模型初始化和中间的归一化层基本解决。但是,尽管在增加了归一化技术的情况下很深的神经网络可以收敛,又出现了另外一个问题,即随着模型深度的增加,模型的准确率反而下
- 论文阅读笔记1——DARTS:Differentiable Architecture Search可微分架构搜索(一)(论文翻译学习)
fuhao7i
论文阅读笔记深度学习人工智能机器学习算法计算机视觉
DARTS:DifferentiableArchitectureSearch可微分架构搜索(一)DARTS:DifferentiableArchitectureSearch(一)ABSTRACT摘要1.INTRODUCTION介绍2.可微的结构搜索加油加油!如果你感觉你现在很累,那么恭喜你,你现在正在走上坡路!让我们一起加油!欢迎关注我的讲解视频,让我们一起学习:Bilibili主页:https:
- 【CCM-SLAM论文阅读笔记】
随机取名字
协同SLAM论文阅读slam
CCM-SLAM论文阅读笔记整体框架结构如图所示:单智能体只负责采集图像数据,运行实时视觉里程计VO以估计当前位姿和环境地图,由于单智能体计算资源有限,负责生成的局部地图只包含当前N个最近的关键帧。服务器负责地图管理、地点识别、地图融合和全局BA优化。所有局部地图使用本地里程计框架,地图信息在从一个本地里程计到另一个本地里程计框架的相对坐标中进行交换。CCM-SLAM不假设任何关于智能体初始位置的
- 【论文阅读笔记|EMNLP2023】DemoSG: Demonstration-enhanced Schema-guided Generation for Low-resource Event Ext
Rose sait
论文阅读笔记
论文题目:DemoSG:Demonstration-enhancedSchema-guidedGenerationforLow-resourceEventExtraction论文来源:EMNLP2023论文链接:2023.findings-emnlp.121.pdf(aclanthology.org)代码链接:https://github.com/GangZhao98/DemoSG0摘要当前大多数
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen