- TensorFlow 2.0 初学者入门指南:从零构建图像分类模型
未来创世纪
tensorflowtensorflow分类人工智能
TensorFlow2.0初学者入门指南:从零构建图像分类模型摘要本文为TensorFlow2.0的初学者提供了一个完整的入门教程。通过使用KerasAPI,我们将详细介绍如何加载数据集、构建神经网络模型、训练模型以及评估模型性能。我们将以MNIST手写数字数据集为例,逐步展示如何从零开始构建一个图像分类器,并最终实现超过98%的准确率。本文旨在帮助初学者快速掌握TensorFlow2.0的核心概
- Tensorflow 2.0 使用流程详解
天真的和感伤的想象家
工具tensorflow人工智能神经网络卷积神经网络
Tensorflow2.0使用流程详解前言:明确神经网络搭建流程,列举了过程中所有实现方法。絮叨几句:自己最初就是想借tensorflow架构一个简单网络,但看了网上诸多教程,依旧对tensorflow如何去实现感到糊涂,官方文档教程和指南也感觉逻辑搞得相当混乱和复杂,各种方法混用,看了反而更莫名其妙,获取到的知识碎片化严重,还记不牢。更有些教程知识点反而集中到了感知机、线性回归、各类神经网络上。
- 猫狗识别基于tensorflow2.0 GPU版 自建CNN模型
重工黑大帅
深度学习tensorflow深度学习机器学习python可视化
猫狗识别基于tensorflow2.0GPU版自建CNN模型1.导入库importtensorflowastffromtensorflow.keras.layersimportConv2D,MaxPooling2D,Flatten,Densefromtensorflow.keras.modelsimportSequential,load_modelfromtensorflow.kerasimpor
- 猫狗识别基于tensorflow2.0 GPU版 自建CNN模型+数据增强+Dropout
重工黑大帅
深度学习可视化pythontensorflow深度学习机器学习
猫狗识别基于tensorflow2.0GPU版自建CNN模型+数据增强+Dropout1.导入库fromtensorflow.keras.layersimportConv2D,MaxPooling2D,Flatten,Densefromtensorflow.keras.modelsimportSequential,load_modelfromtensorflow.kerasimportoptimi
- tensorflow2.0对应python版本_深度学习-python猫狗识别tensorflow2.0
weixin_39977488
好久没更新了,一巴掌拍了拍自己闲得发慌的脸。虽说生活的压力不大,但是也不能太咸鱼啊。平时浪归浪,但是学习和工作还是不能落下。最近的工作太繁杂了,不知道要从何写起,想起之前写过用tensorflow1.x实现的「猫狗识别」的案例,这次就写一个用tensorflow2.0实现的案例吧。1.数据集的准备下载后解压,得到如下的文件夹文件夹train里面放着25000张图像,猫和狗的图像分别都是12500张
- 错误moduleNotFoundError: No module named 'matplotlib'
逆着tensor
tensorflow2.0学习tensorflow
错误ModuleNotFoundError:Nomodulenamed‘matplotlib’问题tensorflow2.0中jupyternotebook编写线性回归例子,出现ModuleNotFoundError:Nomodulenamed'matplotlib’错误解决办法好了,重新加载程序,已经可以用了。
- TypeError: unsupported operand type(s) for +=: ‘Dense‘ and ‘str‘
开始King
人工智能pythontensorflow
tensorflow2.0报这个错误因为你在定义模型的时候model=Sequential(SimpleRNN(3),Dense(5,activation='softmax'))是不是感觉少了点什么,没加[]model=Sequential([SimpleRNN(3),Dense(5,activation='softmax')])
- 基于TensorFlow 2.0的DBN故障诊断程序
ydlhnust
深度学习
以下是一个基于TensorFlow2.0的DBN故障诊断程序,包含特征可视化和结果分析。程序使用合成振动数据进行演示,可直接运行。```pythonimportnumpyasnpimportmatplotlib.pyplotaspltimporttensorflowastffromtensorflow.kerasimportlayers,modelsfromsklearn.model_select
- Anaconda Tensorflow2.0稳定版安装教程
YeahQing
Anaconda安装Anaconda安装国内因为某些原因,可以在清华镜像站下载。Anaconda默认自带python,所以无需提前下载python清华镜像站Anaconda官网image-20191124164832545.pngimage-20191124165041433.png此处两个高级设置的解释:将Anaconda添加到环境变量中。(无需勾选)可以让其他IDE检测到Anaconda的Py
- Tensorflow2.0 查看网络中每层的名称、权重及特征图绘制
cofisher
Tensorflow2.0深度学习PHM项目实战--建模篇深度学习pythontensorflow
文章目录项目介绍实现过程1、构建网络2、查看每层名称3、查看指定层的权值4、特征图绘制项目介绍在网络训练过程中,我们经常需要查看某层权重的变化过程,这其实只需要简单的API就能实现。为了方便演示,我们使用迁移学习到的MobileNetV2网络。实现过程1、构建网络我们将冻结迁移到的MobileNetV2网络,然后将它最后的分类层换成我们自己定义的分类层即可。mobile=tf.keras.appl
- Tensorflow2.0 评价模型复杂度:参数量、FLOPs 和 MACC 计算
cofisher
深度学习PHM项目实战--建模篇tensorflow深度学习卷积python
文章目录项目介绍代码实现:对于迁移学习网络(复杂)1、迁移学习不带分类层的简化版MobileNetV2网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC代码实现:对于自编写网络(简单)1、导入网络2、查看网络结构3、提取需要分析的层4、计算FLOPs和MACC项目介绍在论文写作时,我们经常会对所提出模型的复杂度进行分析,主要用到的评价指标包括参数量、FLOPs和MACC,它们的计
- Tensorflow2.0 对自己的图片数据集进行分类
cofisher
python深度学习PHM项目实战--建模篇tensorflowpython深度学习
文章目录项目介绍数据集网络模型代码实现1、导入需要的库2、定义图像加载和预处理函数3、定义构造Dataset数据集函数4、构造Dataset数据集5、构建网络6、初始化优化器和损失函数7、定义损失函数8、定义梯度下降函数9、保留Checkpoint文件10、训练过程11、保存模型到.h5文件中12、绘制准确率曲线
- 为使用tensorflow2.0 以上版本。卸载cuda8.0 安装cuda10.1 cudnn7.6
xuanxi
配置一个虚拟环境名为tfkeras:python3.5-3.8+cuda10.1+tensorflow-gpu==2.1-2.3+cudnn7.6>condacreate-ntf2keraspython=3.8#先创建一个名为tfkeras,环境为python3.8的环境下一步开始在tfkeras这个虚拟环境下面装package卸载cuda8.0因为winserver2012原本装的是cuda8.
- Tensorflow2.0实现像素归一化与频谱归一化,一次彻底地梳理
人工智能T哥
一、前言归一化技术的改进是生成对抗网络(GenerativeAdversarialNetworks,GAN)中众多改进的一种,本文介绍常用于当前GAN中的像素归一化(Pixelnormalization,或称为像素规范化)和频谱归一化(Spectralnormalization,或称频谱规范化),在高清图片生成中,这两种归一化技术得到了广泛使用,最后使用Tensorflow2实现像素归一化和频谱归
- tensorflow2.0的cpu与gpu运行时间对比
尘埃飞舞
人工智能pythontensorflow
文章目录前言一、导入环境二、定义函数三、测试前言这里运用一个自定义大小的矩阵数据计算,来测试gpu与cpu运算时间的对比。以下为实现方法一、导入环境示例:pandas是基于NumPy的一种工具,该工具是为了解决数据分析任务而创建的。#设置显卡内存使用率,根据使用率占用importosos.environ["TF_FORCE_GPU_ALLOW_GROWTH"]="true"importtensor
- 如何用 Python 和 Tensorflow 2.0 神经网络分类表格数据?
nkwshuyi
以客户流失数据为例,看Tensorflow2.0版本如何帮助我们快速构建表格(结构化)数据的神经网络分类模型。变化表格数据,你应该并不陌生。毕竟,Excel这东西在咱们平时的工作和学习中,还是挺常见的。在之前的教程里,我为你分享过,如何利用深度神经网络,锁定即将流失的客户。里面用到的,就是这样的表格数据。时间过得真快,距离写作那篇教程,已经一年半了。这段时间里,出现了2个重要的变化,使我觉得有必要
- Tensorflow2.0笔记 - where,scatter_nd, meshgrid相关操作
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
本笔记记录tf.where进行元素位置查找,scatter_nd用于指派元素到tensor的特定位置,meshgrid用作绘图的相关操作。importtensorflowastfimportnumpyasnpimportmatplotlib.pyplotasplttf.__version__#where操作查找元素位置#输入的tensor是True,False组成的tensortensor=tf.
- huggingface 的trainer训练框架优势
be_humble
人工智能深度学习python
背景HuggingfaceTransformers是基于一个开源基于transformer模型结构提供的预训练语言库,它支持Pytorch,Tensorflow2.0,并且支持两个框架的相互转换。框架支持了最新的各种NLP预训练语言模型,使用者可以很快速的进行模型的调用,并且支持模型furtherpretraining和下游任务fine-tuning。Transformers库写了了一个trans
- Tensorflow2.0笔记 - Tensor的限值clip操作
亦枫Leonlew
TensorFlow2.0笔记tensorflow人工智能python深度学习
本笔记主要记录使用maximum/minimum,clip_by_value和clip_by_norm来进行张量值的限值操作。importtensorflowastfimportnumpyasnptf.__version__#maximum/minimumz做上下界的限值tensor=tf.random.shuffle(tf.range(10))print(tensor)#maximum(x,y,
- Tensorflow2.0基础-笔记-图像识别-猫狗数据集
二流子学程序
tensorflow2.0tensorflow图像识别
importtensorflowastfimportmatplotlib.pyplotaspltimportnumpyasnp%matplotlibinlineimportglobimage_filenames1=glob.glob('./DataSet/猫狗数据集_2000/dc_2000/train/cat/*.jpg')image_filenames2=glob.glob('./DataSe
- Tensorflow2.0笔记 - tensor排序操作
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习tensorflow2
本笔记主要记录sort,argsort,以及top_k操作,加上一个求TopK准确度的例子。importtensorflowastfimportnumpyasnptf.__version__#sort,argsort#对1维的tensor进行排序tensor=tf.random.shuffle(tf.range(10))print(tensor)#升序print("======tf.sort(di
- Tensorflow2.0笔记 - tensor的padding和tile
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能深度学习python
本笔记记录tensor的填充和tile操作,对应tf.pad和tf.tileimporttensorflowastfimportnumpyasnptf.__version__#pad做填充#tf.pad(tensor,paddings,mode='CONSTANT',name=None)#1维tensor填充tensor=tf.random.uniform([5],maxval=10,dtype=
- 2019年上半年收集到的人工智能开源框架介绍文章
城市中迷途小书童
2019年上半年收集到的人工智能开源框架介绍文章TensorFlow基本使用TensorFlow.js:让你在浏览器中也能玩转机器学习人工智能学习框架TensorFlow渐近分析TensorFlow什么的都弱爆了,强者只用Numpy搭建神经网络TensorFlow框架的开源工具箱Ludwig人工智能学习框架TensorFlow必须掌握和了解的数学基础TensorFlow2.0来了9步教你用NumP
- conda多虚拟环境的搭建与切换
溯源006
pythonconda
在Python开发中,很多时候我们希望每个应用有一个独立的Python环境(比如应用1需要用到TensorFlow1.X,而应用2使用TensorFlow2.0)。这时,Conda虚拟环境即可为一个应用创建一套“隔离”的Python运行环境。使用Python的包管理器conda即可轻松地创建Conda虚拟环境。常用命令如下【1】:condacreate--name[env-name]#建立名为[e
- Tensorflow2.0笔记 - 范式norm,reduce_min/max/mean,argmax/min, equal,unique
亦枫Leonlew
TensorFlow2.0pythontensorflow笔记人工智能
练习norm,reduce_min/max,argmax/min,equal,unique等相关操作。范数主要有三种:importtensorflowastfimportnumpyasnptf.__version__#范数参考:https://blog.csdn.net/HiWangWenBing/article/details/119707541tensor=tf.convert_to_tens
- pythorch及tensorflow2.0以上版本的安装
Rayne_tab
前言从tensorflow1.X用到现在了,pytorch也是去年接触的,这两个框架都属于更新比较快的,因此难免更新自己的版本。最头疼的莫过于CUDA,cudnn这些东西的版本匹配。以前看了不少教程,让我们安装cuda,cudnn,配置环境变量。其实,这两个框架的GPU版本配置早就很简单很简单了!根本不用下载CUDA,cudnn这些!准备工作要准备的就两点:1.Anaconda/Miniconda
- Tensorflow2.0笔记 - tensor的合并和分割
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
主要记录concat,stack,unstack和split相关操作的作用importtensorflowastfimportnumpyasnptf.__version__#concat对某个维度进行连接#假设下面的tensor0和tensor1分别表示4个班级35名同学的8门成绩和两个班级35个同学8门成绩tensor0=tf.ones([4,35,8])tensor1=tf.ones([2,3
- 所有情况下tensorflow2.0深度学习环境最快安装方法!
小火龙G
首先,你需要下载一个miniconda安装记得添加环境变量就是在安装过程中看到path这个单词的选项的时候就给勾选上就行然后启动CMD,不会启动CMD请百度在CMD内输入以下命令condalist如果有类似界面即代表环境正确添加如果未显示类似界面请重新安装(比手动path易懂)CMD然后就可以安装了输入condainstalltensorflow-gpu==2.0.0然后等待运行完成就行,如果不能
- 基于Python TensorFlow keras.Sequential深度神经网络的深度学习回归
疯狂学习GIS
1写在前面前期一篇博客(https://blog.csdn.net/zhebushibiaoshifu/article/details/114001720)详细介绍了基于TensorFlowtf.estimator接口的深度学习网络;而在TensorFlow2.0中,新的Keras接口具有与tf.estimator接口一致的功能,且其更易于学习,对于新手而言友好程度更高;在TensorFlow官网
- Tensorflow2.0笔记 - 不使用layer方式,简单的MNIST训练
亦枫Leonlew
TensorFlow2.0tensorflow笔记人工智能python深度学习
本笔记不使用layer相关API,搭建一个三层的神经网络来训练MNIST数据集。前向传播和梯度更新都使用最基础的tensorflowAPI来做。importtensorflowastffromtensorflowimportkerasfromtensorflow.kerasimportdatasetsimportnumpyasnpdefload_mnist():path=r'./mnist.npz
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla