- Python机器学习与深度学习:决策树、随机森林、XGBoost与LightGBM、迁移学习、循环神经网络、长短时记忆网络、时间卷积网络、自编码器、生成对抗网络、YOLO目标检测等
WangYan2022
机器学习/深度学习Python机器学习深度学习随机森林迁移学习
融合最新技术动态与实战经验,旨在系统提升以下能力:①掌握ChatGPT、DeepSeek等大语言模型在代码生成、模型调试、实验设计、论文撰写等方面的实际应用技巧②深入理解深度学习与经典机器学习算法的关联与差异,掌握其理论基础③熟练运用PyTorch实现各类深度学习模型,包括迁移学习、循环神经网络(RNN)、长短时记忆网络(LSTM)、时间卷积网络(TCN)、自编码器、生成对抗网络(GAN)、YOL
- AI编程基础:学习Python是进入AI领域的必经之路(文末含学习路线与知识推荐)
Clf丶忆笙
AI人工智能开发全栈教程学习python人工智能ai
文章目录Python市场行情:AI开发的首选语言为什么学习Python对AI至关重要AI开发所需的Python知识体系Python编程基础科学计算与数据处理机器学习与深度学习性能优化与并行计算Python学习路线推荐阶段一:Python编程基础(1-2个月)阶段二:科学计算与数据处理(1-2个月)阶段三:机器学习基础(2-3个月)阶段四:深度学习与AI专项(3-6个月)阶段五:进阶与专项深化(持续
- 为什么 Python 是 AI 的首选语言?
文章目录一、简洁优雅,易于上手二、丰富的库和框架1.数据处理与分析2.数据可视化3.机器学习与深度学习框架三、强大的社区支持四、跨平台性和可移植性五、与其他语言的互操作性文章配套代码已上传,点击查看:https://download.csdn.net/download/2501_92578370/91180848在人工智能(AI)技术飞速发展的今天,编程语言的选择对AI开发者来说至关重要。当你翻开
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等深度科研
Yolo566Q
chatgpt语言模型数据分析
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等
xiao5kou4chang6kai4
人工智能深度学习机器学习rnn语言模型lstm深度学习机器学习人工智能DeepSeek
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模
asyxchenchong888
chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等科研应用
科研的力量
人工智能ChatGPTchatgpt语言模型数据分析
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 《网络攻防技术》《数据分析与挖掘》《网络体系结构与安全防护》这三个研究领域就业如何?
扣棣编程
其他网络数据分析安全
这几个研究领域都是当前信息技术领域的热点方向,就业前景总体来说都非常不错,但各有侧重和特点。我来帮你详细分析一下:1.网络攻防技术就业前景:非常火热且持续增长。核心方向:渗透测试、漏洞挖掘与分析、恶意软件分析、入侵检测/防御、应急响应、威胁情报、安全审计、红蓝对抗等。市场需求:极高。数字化转型深入、网络攻击日益频繁和复杂(勒索软件、APT攻击、供应链攻击等)、数据安全与隐私保护法规(如GDPR、中
- 《Python数据分析与挖掘实战》Chapter8中医证型关联规则挖掘笔记
茫茫大地真干净
机器学习Python数据挖掘
最近在学习《Python数据分析与挖掘实战》中的案例,写写自己的心得。代码分为两大部分:1.读取数据并进行聚类分析2.应用Apriori关联规则挖掘规律1.聚类部分函数分析:defprogrammer_1():datafile="C:/Users/longming/Desktop/chapter8/data/data.xls"processedfile="C:/Users/longming/Des
- AI大模型从0到1记录学习 大模型技术之机器学习 day27-day60
Gsen2819
算法大模型人工智能人工智能学习机器学习
机器学习概述机器学习(MachineLearning,ML)主要研究计算机系统对于特定任务的性能,逐步进行改善的算法和统计模型。通过输入海量训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测。机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸优化、算法复杂度理论等多门学科。人工智能、机器学习与深度学习人工智能(AI)是计算机科学的一个广泛领域,
- 机器学习与深度学习22-数据预处理
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.常见的数据质量问题2.归一化和标准化3.特征选择和特征提取4.独热编码前文回顾上一篇文章地址:链接1.常见的数据质量问题在数据预处理过程中,常见的数据质量问题包括缺失值、异常值和重复数据。以下是这些问题的详细描述以及处理方法:缺失值:缺失值是指数据表中某些单元格或字段缺乏数值或信息的情况处理方法:删除包含缺失值的行:如果缺失值数量较少,可以考虑删除包含缺失值的行,但这可能导致信息损
- Rust 机器学习
KENYCHEN奉孝
Rustrust机器学习开发语言
Rust机器学习Rust机器学习与深度学习现状Rust在机器学习(ML)和深度学习(DL)领域的生态仍处于早期阶段,但因其高性能、内存安全和并发优势,逐渐吸引开发者探索。以下从工具链、库和实际应用方向展开。机器学习(ML)笔记以下是关于机器学习(MachineLearning,ML)的详细学习集,涵盖核心概念、方法、工具和学习路径:机器学习基础概念机器学习是人工智能的子领域,通过算法让计算机从数据
- 云计算:从基础架构原理到最佳实践之:云计算数据分析与挖掘
AI天才研究院
AI大模型企业级应用开发实战大数据人工智能语言模型JavaPython架构设计
作者:禅与计算机程序设计艺术1.背景介绍什么是云计算?云计算(Cloudcomputing)是一种基于网络的服务,它利用计算机硬件、软件、存储、网络等资源随需动态分配,通过因特网把应用程序、数据库及其他资源均匀地分布在全球不同位置的服务器上,使得用户可按需快速扩充计算能力。它主要服务于各行各业,如在线支付、云游戏、互联网企业、科学研究、电信运营、教育、医疗等领域。为何要进行云计算数据分析与挖掘?数
- 机器学习与深度学习21-信息论
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.信息上的概念2.相对熵是什么3.互信息是什么4.条件熵和条件互信息5.最大熵模型6.信息增益与基尼不纯度前文回顾上一篇文章链接:地址1.信息上的概念信息熵(Entropy)是信息理论中用于度量随机变量不确定性的概念。它表示了对一个随机事件发生的预测的平均困惑程度或信息量。对于一个离散型随机变量X,其信息熵H(X)定义为所有可能取值的负概率加权平均。数学上,可以使用以下公式来计算离散
- 机器学习与深度学习07-随机森林01
my_q
机器学习与深度学习机器学习深度学习随机森林
目录前文回顾1.随机森林的定义2.随机森林中的过拟合3.随机森林VS单一决策树4.随机森林的随机性前文回顾上一篇文章链接:地址1.随机森林的定义随机森林(RandomForest)是一种集成学习算法,用于解决分类和回归问题。它基于决策树(DecisionTrees)构建,并通过组合多个决策树来提高模型的性能和稳定性。随机森林的主要思想是通过随机选择样本和特征来构建多棵决策树,然后综合它们的预测结果
- 机器学习与深度学习20-数学优化
my_q
机器学习与深度学习机器学习深度学习人工智能
目录前文回顾1.梯度下降的基本原理2.什么是损失函数?3.随机梯度下降和小批量梯度下降4.什么是学习率5.优化算法中的收敛性6.常用的数学优化算法前文回顾上一篇文章链接:地址1.梯度下降的基本原理梯度下降(GradientDescent)是一种常用的优化算法,用于对目标函数进行最小化或最大化。其基本原理是通过迭代更新模型参数,沿着目标函数的负梯度方向逐步调整参数值,直到达到局部最优解。在机器学习中
- 医疗风险预测AI模型:机器学习与深度学习方法的深度分析与实践
Allen_Lyb
数智化医院2025人工智能机器学习深度学习
一、技术前沿进展与创新架构医疗风险预测领域正处于技术爆发期,多种人工智能模型正不断突破性能极限。通过对最新研究的系统分析,我们观察到以下几个关键发展方向:深度学习模型的革新应用时间序列建模:在脓毒症相关急性肾损伤(SA-AKI)预测领域,ORAKLE模型采用DynamicDeepHit框架整合长短期记忆网络(LSTM),显著提升了动态预测能力。该模型通过处理患者生命体征、实验室指标等多变量时间序列
- 机器学习与深度学习16-概率论和统计学01
my_q
机器学习与深度学习机器学习深度学习概率论
目录前文回顾1.什么是概率论和统计学2.概率的基本概念3.什么是概率密度函数和累积分布函数4.均值、中位数与众数前文回顾上一篇文章地址:链接1.什么是概率论和统计学概率论和统计学是数学中重要的分支,用于研究随机事件和数据的分布、关联性以及不确定性。概率论是研究随机事件发生的可能性和规律的数学学科。它提供了一套工具和方法来描述和分析随机变量、随机过程以及他们之间的关系。概率论包括概率分布、随机变量、
- JAVA资料,C#资料,人工智能资料,Python资料】全网最全编程学习文档合集
wangjinjin180
javac#人工智能
目录Java编程学习资源Java入门基础面向对象编程(OOP)Java高级特性与框架Java项目实践与开发工具C#编程学习资源C#入门与基础面向对象编程(OOP)在C#中的应用C#开发中的常见库与框架C#项目开发与实践人工智能编程学习资源人工智能基础机器学习与深度学习强化学习与自然语言处理AI开发工具与库Python编程学习资源Python基础与语法Python高级特性与库Python数据科学与人
- 机器学习与深度学习13-K均值聚类
my_q
机器学习与深度学习机器学习深度学习均值算法
目录前文回顾1.K均值聚类定义2.K均值聚类的工作原理3.如何确定K均值聚类的K值4.K均值聚类的优点和局限性5.K均值聚类的常见初始化方法6.K均值聚类和层次聚类的区别与联系前文回顾上一篇文章地址:链接1.K均值聚类定义K均值聚类(K-meansclustering)是一种常用的无监督学习算法,用于将数据集划分为K个不同的簇。该算法通过最小化簇内样本之间的平方误差和最大化簇间的距离来确定簇的位置
- 机器学习与深度学习14-集成学习
目录前文回顾1.集成学习的定义2.集成学习中的多样性3.集成学习中的Bagging和Boosting4.集成学习中常见的基本算法5.什么是随机森林6.AdaBoost算法的工作原理7.如何选择集成学习中的基础学习器或弱分类器8.集成学习中常见的组合策略9.集成学习中袋外误差和交叉验证的作用10.集成学习的优势和局限性前文回顾上一篇文章链接:地址1.集成学习的定义集成学习(EnsembleLearn
- 机器学习与深度学习04-逻辑回归02
my_q
机器学习与深度学习机器学习深度学习逻辑回归
目录前文回顾6.正则化在逻辑回归中的作用7.特征工程是什么8.逻辑回归的预测结果如何9.什么是ROC曲线和AUC值10.如何处理类不平衡问题11.什么是交叉验证前文回顾上一篇文章地址:链接6.正则化在逻辑回归中的作用逻辑回归中,正则化是一种用于控制模型复杂度的技术,它对模型的参数进行约束,以防止过拟合。正则化通过在损失函数中引入额外的正则化项来实现,这些正则化项对参数的大小进⾏惩罚,逻辑回归中常用
- 植被监测新范式!Python驱动机器学习反演NDVI/LAI关键技术解析
梦想的初衷~
生态环境遥感植被python机器学习生态环境监测
在全球气候变化与生态环境监测的重要需求下,植被参数遥感反演作为定量评估植被生理状态、结构特征及生态功能的核心技术,正面临数据复杂度提升、模型精度要求高、多源异构数据融合等挑战。人工智能(AI)技术的快速发展,尤其是机器学习与深度学习算法的突破,为解决这些难题提供了全新路径。AI凭借强大的非线性拟合能力、数据特征自动提取优势及跨模态信息融合潜力,能够高效处理遥感数据中的噪声与不确定性,显著提升植被参
- 分享全国数字人才技能提升师资培训班 第五期邀请函
泰迪智能科技01
人工智能人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- 阅读宋立恒《AI制胜:机器学习极简入门》第1章:机器学习概述
酒城译痴无心剑
AI-机器学习-深度学习机器学习人工智能自然语言处理
文章目录一、什么是机器学习二、机器学习的流程(一)数据收集(二)数据预处理(三)特征工程(四)模型构建和训练三、机器学习该如何学(一)AI时代首选Python(二)PyCharm可视化编辑器和Anaconda大礼包1、PyCharm可视化编辑器2、Anaconda大礼包(三)掌握算法原理与掌握机器学习软件库同等重要(四)机器学习与深度学习的区别四、机器学分类(一)监督学习(三)无监督学习(三)强化
- 分享全国数字人才技能提升师资培训班 第五期
泰迪智能科技01
人工智能
线下(广州班):大模型与AIGC多模态技术应用实战线下(青岛班):Deepseek教学应用与智能体开发实战线上班(十二大专题):DeepSeek大模型教学应用实战大模型与AIGC技术应用实战大模型部署与微调实战AIGC多模态技术应用实战数据分析与挖掘实战(泰迪杯竞赛方向)大数据分析与机器学习实战(数学建模方向)商务数据分析实战(Python)计算机视觉应用实战(Pytorch)大数据技术应用实战(
- 2024最新全流程Python编程、机器学习与深度学习
科研的力量
人工智能ChatGPT机器学习深度学习循环神经网络PyTorch随机森林BP神经网络决策树
近年来,人工智能领域的飞速发展极大地改变了各个行业的面貌。当前最新的技术动态,如大型语言模型和深度学习技术的发展,展示了深度学习和机器学习技术的强大潜力,成为推动创新和提升竞争力的关键。特别是PyTorch,凭借其灵活性和高效性,成为科研人员和工程师的首选工具。一、Python基础知识1、Python环境搭建(Python软件下载、安装与版本选择;PyCharm下载、安装;Python之Hello
- 人工智能、机器学习与深度学习:全面介绍与对比分析
山顶望月川
人工智能机器学习深度学习
文章目录引言1.1技术革命的背景1.2三者的关系概述人工智能(AI)概述2.1人工智能的定义与发展历程2.2人工智能的主要分支2.3人工智能的应用领域2.4人工智能的现状与未来趋势机器学习(ML)详解3.1机器学习的基本概念3.2机器学习的核心算法分类3.3机器学习的工作流程3.4机器学习的优势与局限性深度学习(DL)深入解析4.1深度学习的定义与起源4.2神经网络基础架构4.3主流深度学习模型4
- 东南大学图像处理课程PPT核心要点详解
leniou的牙膏
本文还有配套的精品资源,点击获取简介:图像处理是多领域交叉的学科,主要通过数字计算手段操作图像数据。东南大学的PPT讲义详述图像处理的基础知识与实践方法,涵盖了从图像增强到深度学习应用的各个方面。包括图像基础知识、图像增强、变换、分割、特征提取、复原与重建、编码与压缩,以及机器学习与深度学习在图像处理的应用,还可能包含实际案例分析。1.图像基础知识概览图像的数字化数字图像处理开始于图像的数字化。图
- 人工智能、机器学习与深度学习:概念解析与内在联系
AI糊涂是福
人工智能人工智能机器学习深度学习
人工智能、机器学习与深度学习:概念解析与内在联系一、人工智能(ArtificialIntelligence,AI)(一)人工智能的定义人工智能的定义随着技术发展不断演变。从广义上讲,人工智能是指通过计算机技术实现的、模拟人类智能的理论、方法、技术及应用系统。其核心目标是使机器能够执行通常需要人类智能才能完成的任务,如推理、学习、感知、语言理解、决策等。1956年达特茅斯会议被视为人工智能学科的诞生
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$