- 大数据集成方案对比:Kafka vs Flume vs Sqoop
AI天才研究院
计算AI大模型应用入门实战与进阶AgenticAI实战大数据kafkaflumeai
大数据集成方案对比:KafkavsFlumevsSqoop关键词:大数据集成、Kafka、Flume、Sqoop、流处理、批量迁移、日志收集摘要:在大数据生态中,数据集成是连接数据源与数据处理平台的关键环节。本文深度对比Kafka、Flume、Sqoop三大主流集成工具,从核心架构、技术原理、适用场景到实战案例展开系统性分析。通过数学模型量化性能差异,结合实际项目经验总结选型策略,帮助开发者根据业
- Flume到Kafka且均分到多个partition
小学僧来啦
FlumeKafkapartitionFlume
@Author:Spinach|GHB@Link:http://blog.csdn.net/bocai8058文章目录说明情况解决方法说明情况Flume向kafka发布数据时,发现kafka接收到的数据总是在一个partition中,而我们希望发布来的数据在所有的partition平均分布。应该怎么做呢?解决方法Flume的官方文档是这么说的:KafkaSinkusesthetopicandkey
- 大数据ETL工具比较:Sqoop vs Flume vs Kafka
AI天才研究院
AI人工智能与大数据大数据etlsqoopai
大数据ETL工具比较:SqoopvsFlumevsKafka关键词:大数据ETL、Sqoop、Flume、Kafka、数据迁移、日志采集、消息队列摘要:在大数据生态中,ETL(抽取-转换-加载)是数据价值挖掘的关键环节。不同业务场景对数据传输的实时性、可靠性、数据类型有差异化需求,催生了Sqoop、Flume、Kafka等特色鲜明的ETL工具。本文从核心架构、工作原理、性能指标、实战案例四个维度,
- 在大数据求职面试中如何回答分布式协调与数据挖掘问题
在大数据求职面试中如何回答分布式协调与数据挖掘问题场景:小白的大数据求职面试小白是一名初出茅庐的程序员,今天他来到一家知名互联网公司的面试现场,面试官是经验丰富的老黑。以下是他们之间的对话:第一轮提问:分布式与数据采集老黑:小白,你对Zookeeper有了解吗?小白:当然,Zookeeper是一个分布式协调服务,主要用于分布式应用程序中的同步服务、命名服务和配置管理。老黑:不错,你能说说Flume
- 手把手教你玩转 Sqoop:从数据库到大数据的「数据搬运工」
AAA建材批发王师傅
数据库sqoop大数据hivehdfs
一、Sqoop是什么?——数据界的「超级搬运工」兄弟们,今天咱们聊个大数据圈的「搬运小能手」——Sqoop!可能有人会问:这玩意儿跟Flume啥区别?简单来说:Flume是专门搬日志数据的「快递员」而Sqoop是搬数据库数据的「搬家公司」它的名字咋来的?SQL+Hadoop,直接告诉你核心技能:在关系型数据库(比如MySQL)和Hadoop家族(HDFS、Hive、HBase)之间疯狂倒腾数据!核
- Flum的组件和原理。以及配置和基础命令
ApacheFlume架构的原理和组成ApacheFlume是一个高可靠、高性能的服务,用于收集、聚合和移动大量日志数据。它的架构设计灵活且可扩展,能够适应各种不同的数据源和目的地。一、Flume的核心组件及其任务1.Agent定义:Flume的基本运行单元,是一个独立的进程。功能:负责执行数据采集任务,包含Source、Channel和Sink三个主要部分。2.Source(源)定义:数据进入F
- Flume入门指南:大数据日志采集的秘密武器
£菜鸟也有梦
大数据基础大数据flumekafkahadoophive
目录一、Flume是什么?为何如此重要?二、Flume核心概念大揭秘2.1Agent:Flume的核心引擎2.2Source:数据的入口大门2.3Channel:数据的临时港湾2.4Sink:数据的最终归宿2.5Event:数据的最小单元三、Flume工作原理深度剖析3.1数据如何流动3.2可靠性保障机制四、Flume安装与配置实战4.1安装前的准备工作4.2下载与解压4.3配置文件详解4.4启动
- Flume进阶之路:从基础到高阶的飞跃
£菜鸟也有梦
大数据基础flume大数据hadoophive
目录一、Flume高阶特性揭秘二、拦截器:数据的精细雕琢师2.1拦截器的概念与作用2.2常见拦截器类型及案例分析2.2.1时间添加戳拦截器2.2.2Host添加拦截器2.2.3正则表达式过滤拦截器三、选择器:数据流向的掌控者3.1选择器的概念与分类3.2不同选择器的工作原理与案例3.2.1复制选择器3.2.2多路复用选择器3.2.3自定义选择器四、Sink组逻辑处理器:数据传输的保障者4.1Sin
- 记一次·Spark读Hbase
记一次·Spark读Hbase一、背景过年回来,数仓发现hive的一个表丢数据了,需要想办法补数据。这个表是flume消费kafka写hive。但是kafka里只保存最近7天数据,有部分数据kafka里已经没有了。不过这份数据会同时被消费到HBase内存储一份,并且HBase内的数据是正常的。所以这次任务是读HBase数据写Hive表。HBase表内,只有一个列族info,列族内只有一个列valu
- Kafka整合Flume
小顽童王
kafkaflume
Kafka与flume1)准备jar包1、将Kafka主目录lib下的如下jar拷贝至Flume的lib目录下kafka_2.10-0.8.2.1.jar、kafka-clients-0.8.2.1.jar、jopt-simple-3.2.jar、metrics-core-2.2.0.jar、scala-library-2.10.4.jar、zkclient-0.3.jar等2、将如下jar拷贝至
- 电商数仓项目(八) Flume(3) 生产者和消费者配置
涛2021
数据仓库:Hadoop+Hiveflumekafka
目录一、生产数据写到kafka二、消费kafka数据写到hdfs本节讲解Flume生产者和消费者配置。源码下载一、生产数据写到kafka将上节生成的flume-interceptor-1.0.0.jar文件上传到$FLUME_HOME/lib目录下在$FLUME_HOME/conf目录中创建file-flume-kafka.conf文件,文件目录:/u01/gmall/data/in/log-da
- 运维-ES集群介绍
ww22652098814
运维elasticsearch
什么是ElasticStackElasticStack早期名称为elk。elk分别代表了3个组件:-ElasticSearch负责数据存储和检索。-Logstash:负责数据的采集,将源数据采集到ElasticSearch进行存储。-Kibana:负责数据的展示。由于Logstash是一个重量级产品,安装包超过300MB+,很多同学只是用于采集日志,于是使用其他采集工具代替,比如flume,flu
- 《云计算》第三版总结
冰菓Neko
书籍云计算
《云计算》第三版总结云计算体系结构云计算成本优势开源云计算架构Hadoop2.0Hadoop体系架构Hadoop访问接口Hadoop编程接口Hadoop大家族分布式组件概述ZooKeeperHbasePigHiveOozieFlumeMahout虚拟化技术服务器虚拟化存储虚拟化网络虚拟化桌面虚拟化OpenStack开源虚拟化平台NovaSwiftGlance云计算核心算法PaxosDHTGossi
- 数据采集与接入:Kafka、Flume、Flink CDC、Debezium(实时/离线数据获取方式)
晴天彩虹雨
kafkaflumeflink大数据
数据采集是大数据平台中的关键步骤,它负责将数据从多个数据源传输到数据处理系统。对于大数据处理平台来说,数据的实时与离线获取方式至关重要,能够确保系统的响应性与可扩展性。在本篇文章中,我们将深入探讨四种常见的数据采集与接入技术:Kafka、Flume、FlinkCDC、Debezium,并分析它们的适用场景。1.Kafka-分布式流处理平台概述:Kafka是一个分布式流平台,用于高吞吐量、低延迟的数
- Flume启动报错,guava.java包冲突
Lion-ha
大数据
Flume启动时报错如下:(SinkRunner-PollingRunner-DefaultSinkProcessor)[ERROR-org.apache.flume.sink.hdfs.HDFSEventSink.process(HDFSEventSink.java:459)]processfailedjava.lang.NoSuchMethodError:com.google.common.b
- Flume(二十一)Memory Channel
薛定谔的猫1982
#flumeflume大数据
MemoryChannel是将收集来的数据临时存储到内存队列中,如果不指定,那么该队列默认大小是100,即最多允许在队列中存储100条数据。如果队列被占满,那么后来的数据就会被阻塞(即Source收集到的数据就无法放入队列中,产生rollback回滚),直到队列中有位置被空出。实际过程中,这个值一般会调大,一般会调节为10W~30W,如果数据量较大,那么也可以考虑调节为50W。需要注意的是,Mem
- 【课程笔记】华为 HCIA-Big Data 大数据 总结
淵_ken
华为HCIA-BigData大数据大数据
目录HDFS分布式文件系统ZooKeeper分布式应用程序协调服务HBase非关系型分布式数据库Hive分布式数据仓库ClickHouse列式数据库管理系统MapReduce分布式计算框架Yarn资源管理调度器Spark分布式计算框架Flink分布式计算框架Flume日志采集工具Kafka分布式消息队列本课程主要围绕以下几个服务展开:HDFS(Hadoop分布式文件系统)ZooKeeper(分布式
- Windows PC上创建大数据职业技能竞赛实验环境之三--Spark、Hive、Flume、Kafka和Flink环境的搭建
liu9ang
大数据平台hadoopsparkkafkaflink
在前述hadoop-base基础容器环境的基础上,实现Spark、Hive、Flume、kafka和Flink实验环境的搭建。我们已将前述的hadoop-base基础容器进行可阶段的保存:sudodockercommit"hadoopbasev3"hadoop-basecentos/hadoop-base:v3现在,如果已经将前述作业的hadoop-base容器停用并删除,用保存的centos/h
- [大数据技术与应用省赛学习记录一]——软件准备
Ench77
大数据技术与应用比赛筹备大数据
@JIAQI第一章大数据平台环境搭建在指定主机上完成Hadoop完全分布式、Spark、Flink、kafka、flume的安装配置赛前准备主办方要求使用以下相关版本软件环境,仅供参考:设备类型软件类别软件名称、版本号竞赛服务器竞赛环境大数据集群操作系统Centos7大数据平台组件unbuntu18.04Hadoop2.7.7Hive2.3.4Spark2.1.1Kafka2.0.0Redis4.
- Flume+kafka+SparkStreaming整合
逆水行舟如何
大数据架构kafka常用命令flume进行数据收集的编写实时架构
一、需求模拟一个流式处理场景:我再说话,我编写好的一个sparkstreaming做词频统计1.模拟说话:nc-lk3399flumesource:avro(qyl01:3399)channel:memorysink:kafkasink模拟实时的日志生成:echoaabbcc>>/home/qyl/logs/flume.logflumesource:exec(tail-f)channel:memo
- Flume Source原理与代码实例讲解
AI天才研究院
计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
FlumeSource原理与代码实例讲解1.背景介绍ApacheFlume是一个分布式、可靠且高可用的海量日志采集、聚合和传输的系统,它是Apache软件基金会的一个顶级项目。在大数据时代,日志数据作为企业的重要资产,如何高效地收集和传输海量日志数据成为了一个迫切需要解决的问题。Flume应运而生,它可以从不同的数据源采集数据,经过聚合后再将数据传输到下一个节点,最终存储到HDFS、HBase或S
- SparkStreaming概述
淋一遍下雨天
spark大数据学习
SparkStreaming主要用于流式计算,处理实时数据。DStream是SparkStreaming中的数据抽象模型,表示随着时间推移收到的数据序列。SparkStreaming支持多种数据输入源(如Kafka、Flume、Twitter、TCP套接字等)和数据输出位置(如HDFS、数据库等)。SparkStreaming特点易用性:支持Java、Python、Scala等编程语言,编写实时计
- kafka spark java_Kafka与Spark整合
weixin_39630247
kafkasparkjava
本篇文章帮大家学习Kafka与Spark整合,包含了Kafka与Spark整合使用方法、操作技巧、实例演示和注意事项,有一定的学习价值,大家可以用来参考。在本章中,将讨论如何将apacheKafka与SparkStreamingAPI集成。Spark是什么?SparkStreamingAPI支持实时数据流的可扩展,高吞吐量,容错流处理。数据可以从Kafka,Flume,Twitter等许多来源获取
- Spark-Streaming
美味的大香蕉
笔记
探索Spark-Streaming:实时数据处理的得力助手在大数据处理领域,实时处理越来越重要。今天就来聊一聊Spark生态中处理流式数据的利器——Spark-Streaming。Spark-Streaming主要用于处理流式数据,像从Kafka、Flume等数据源来的数据,它都能轻松应对。它使用离散化流(DStream)作为核心抽象。简单来说,DStream就是把随时间收到的数据,按照时间区间封
- 数据中台架构与技术体系
Aurora_NeAr
架构大数据
数据中台整体架构设计数据中台分层架构数据采集层数据源类型:业务系统(ERP、CRM)、日志、IoT设备、第三方API等。采集方式:实时采集:Kafka、FlinkCDC(变更数据捕获)。离线采集:Sqoop、DataX(批量同步数据库)。日志采集:Flume、Filebeat。数据缓冲与预处理:使用消息队列(如Kafka)作为缓冲区,应对数据流量峰值。数据存储层数据湖(DataLake):存储原始
- 大数据面试题目_综合面试_hadoop面试题_hive面试题_sqoop面试题_spark面试题_flume面试题_kafka面试题---大数据面试题007
添柴程序猿
大数据hadoophive大数据面试题flume
大数据面试:1.说一下hadoop的集群部署模式有哪几种,完全分布式如何部署以及配置?2.hadoop的守护进程有哪些?2.之前的公司,为什么要离职?3.之前公司的待遇工资多少?4.用Flink处理过什么场景的业务,是如何实现的,说一下流程?5.有没有用过NIFI?6.做的时候后端是如何做的,用的什么框架?有没有了解过springcloudTencent?7.hadoop中的代理用户功能的作用,和
- 探索Hadoop生态圈:核心组件介绍
放。756
hadoop大数据分布式
Hadoop生态圈包括多个组件,如HDFS提供分布式存储,MapReduce处理大数据计算,YARN管理资源调度,HBase支持非结构化数据存储,Hive实现数据仓库功能,Pig提供高级数据流处理,Sqoop实现数据迁移,Flume处理日志收集等。这些组件共同构建起强大的大数据处理框架。
- flume 负载均衡 详解
goTsHgo
flume大数据分布式flume负载均衡大数据
ApacheFlume是一个分布式、可靠且可用的系统,旨在有效地从多个数据源收集、聚合和移动大量日志数据到集中存储系统(如HDFS、HBase等)。在数据传输过程中,负载均衡是Flume的一个重要功能,它有助于确保多个节点间的负载均匀分布,从而提高系统的稳定性和吞吐量。从Flume的架构角度来看,它的负载均衡涉及多个组件,包括Source、Channel和Sink,下面我们逐层从底层原理和部分源代
- 数据仓库:如何解决ODS数据零点漂移问题
夜希辰
数据仓库大数据
本篇文章讲解的是从业务库同步数据至数仓导致的零点漂移,查看flume+kafka同步数据导致的零点漂移参考该文章:业务数据采集_零点漂移处理方法(Flume+Kafka+HDFS)一、数据零点漂移概念1、什么是零点漂移:数据零点漂移指的是数据同步过程中,ODS表按时间字段分区时,同一个业务日期(分区)包含前一天的数据或丢失了当天的数据、或者包含后一天凌晨附近的数据。由于ODS需要承接面向历史的细节
- Windows PC上创建大数据职业技能竞赛实验环境之六--Flume、Kafka和Flink编程
liu9ang
大数据平台hadoopkafkaflinkredis
1Flume参看日志采集工具Flume的安装与使用方法_厦大数据库实验室博客(xmu.edu.cn)。查看Flume安装root@client1:~#flume-ngversionFlume1.7.0Sourcecoderepository:https://git-wip-us.apache.org/repos/asf/flume.gitRevision:511d868555dd4d16e6ce4
- jvm调优总结(从基本概念 到 深度优化)
oloz
javajvmjdk虚拟机应用服务器
JVM参数详解:http://www.cnblogs.com/redcreen/archive/2011/05/04/2037057.html
Java虚拟机中,数据类型可以分为两类:基本类型和引用类型。基本类型的变量保存原始值,即:他代表的值就是数值本身;而引用类型的变量保存引用值。“引用值”代表了某个对象的引用,而不是对象本身,对象本身存放在这个引用值所表示的地址的位置。
- 【Scala十六】Scala核心十:柯里化函数
bit1129
scala
本篇文章重点说明什么是函数柯里化,这个语法现象的背后动机是什么,有什么样的应用场景,以及与部分应用函数(Partial Applied Function)之间的联系 1. 什么是柯里化函数
A way to write functions with multiple parameter lists. For instance
def f(x: Int)(y: Int) is a
- HashMap
dalan_123
java
HashMap在java中对很多人来说都是熟的;基于hash表的map接口的非同步实现。允许使用null和null键;同时不能保证元素的顺序;也就是从来都不保证其中的元素的顺序恒久不变。
1、数据结构
在java中,最基本的数据结构无外乎:数组 和 引用(指针),所有的数据结构都可以用这两个来构造,HashMap也不例外,归根到底HashMap就是一个链表散列的数据
- Java Swing如何实时刷新JTextArea,以显示刚才加append的内容
周凡杨
java更新swingJTextArea
在代码中执行完textArea.append("message")后,如果你想让这个更新立刻显示在界面上而不是等swing的主线程返回后刷新,我们一般会在该语句后调用textArea.invalidate()和textArea.repaint()。
问题是这个方法并不能有任何效果,textArea的内容没有任何变化,这或许是swing的一个bug,有一个笨拙的办法可以实现
- servlet或struts的Action处理ajax请求
g21121
servlet
其实处理ajax的请求非常简单,直接看代码就行了:
//如果用的是struts
//HttpServletResponse response = ServletActionContext.getResponse();
// 设置输出为文字流
response.setContentType("text/plain");
// 设置字符集
res
- FineReport的公式编辑框的语法简介
老A不折腾
finereport公式总结
FINEREPORT用到公式的地方非常多,单元格(以=开头的便被解析为公式),条件显示,数据字典,报表填报属性值定义,图表标题,轴定义,页眉页脚,甚至单元格的其他属性中的鼠标悬浮提示内容都可以写公式。
简单的说下自己感觉的公式要注意的几个地方:
1.if语句语法刚接触感觉比较奇怪,if(条件式子,值1,值2),if可以嵌套,if(条件式子1,值1,if(条件式子2,值2,值3)
- linux mysql 数据库乱码的解决办法
墙头上一根草
linuxmysql数据库乱码
linux 上mysql数据库区分大小写的配置
lower_case_table_names=1 1-不区分大小写 0-区分大小写
修改/etc/my.cnf 具体的修改内容如下:
[client]
default-character-set=utf8
[mysqld]
datadir=/var/lib/mysql
socket=/va
- 我的spring学习笔记6-ApplicationContext实例化的参数兼容思想
aijuans
Spring 3
ApplicationContext能读取多个Bean定义文件,方法是:
ApplicationContext appContext = new ClassPathXmlApplicationContext(
new String[]{“bean-config1.xml”,“bean-config2.xml”,“bean-config3.xml”,“bean-config4.xml
- mysql 基准测试之sysbench
annan211
基准测试mysql基准测试MySQL测试sysbench
1 执行如下命令,安装sysbench-0.5:
tar xzvf sysbench-0.5.tar.gz
cd sysbench-0.5
chmod +x autogen.sh
./autogen.sh
./configure --with-mysql --with-mysql-includes=/usr/local/mysql
- sql的复杂查询使用案列与技巧
百合不是茶
oraclesql函数数据分页合并查询
本片博客使用的数据库表是oracle中的scott用户表;
------------------- 自然连接查询
查询 smith 的上司(两种方法)
&
- 深入学习Thread类
bijian1013
javathread多线程java多线程
一. 线程的名字
下面来看一下Thread类的name属性,它的类型是String。它其实就是线程的名字。在Thread类中,有String getName()和void setName(String)两个方法用来设置和获取这个属性的值。
同时,Thr
- JSON串转换成Map以及如何转换到对应的数据类型
bijian1013
javafastjsonnet.sf.json
在实际开发中,难免会碰到JSON串转换成Map的情况,下面来看看这方面的实例。另外,由于fastjson只支持JDK1.5及以上版本,因此在JDK1.4的项目中可以采用net.sf.json来处理。
一.fastjson实例
JsonUtil.java
package com.study;
impor
- 【RPC框架HttpInvoker一】HttpInvoker:Spring自带RPC框架
bit1129
spring
HttpInvoker是Spring原生的RPC调用框架,HttpInvoker同Burlap和Hessian一样,提供了一致的服务Exporter以及客户端的服务代理工厂Bean,这篇文章主要是复制粘贴了Hessian与Spring集成一文,【RPC框架Hessian四】Hessian与Spring集成
在
【RPC框架Hessian二】Hessian 对象序列化和反序列化一文中
- 【Mahout二】基于Mahout CBayes算法的20newsgroup的脚本分析
bit1129
Mahout
#!/bin/bash
#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements. See the NOTICE file distributed with
# this work for additional information re
- nginx三种获取用户真实ip的方法
ronin47
随着nginx的迅速崛起,越来越多公司将apache更换成nginx. 同时也越来越多人使用nginx作为负载均衡, 并且代理前面可能还加上了CDN加速,但是随之也遇到一个问题:nginx如何获取用户的真实IP地址,如果后端是apache,请跳转到<apache获取用户真实IP地址>,如果是后端真实服务器是nginx,那么继续往下看。
实例环境: 用户IP 120.22.11.11
- java-判断二叉树是不是平衡
bylijinnan
java
参考了
http://zhedahht.blog.163.com/blog/static/25411174201142733927831/
但是用java来实现有一个问题。
由于Java无法像C那样“传递参数的地址,函数返回时能得到参数的值”,唯有新建一个辅助类:AuxClass
import ljn.help.*;
public class BalancedBTree {
- BeanUtils.copyProperties VS PropertyUtils.copyProperties
诸葛不亮
PropertyUtilsBeanUtils
BeanUtils.copyProperties VS PropertyUtils.copyProperties
作为两个bean属性copy的工具类,他们被广泛使用,同时也很容易误用,给人造成困然;比如:昨天发现同事在使用BeanUtils.copyProperties copy有integer类型属性的bean时,没有考虑到会将null转换为0,而后面的业
- [金融与信息安全]最简单的数据结构最安全
comsci
数据结构
现在最流行的数据库的数据存储文件都具有复杂的文件头格式,用操作系统的记事本软件是无法正常浏览的,这样的情况会有什么问题呢?
从信息安全的角度来看,如果我们数据库系统仅仅把这种格式的数据文件做异地备份,如果相同版本的所有数据库管理系统都同时被攻击,那么
- vi区段删除
Cwind
linuxvi区段删除
区段删除是编辑和分析一些冗长的配置文件或日志文件时比较常用的操作。简记下vi区段删除要点备忘。
vi概述
引文中并未将末行模式单独列为一种模式。单不单列并不重要,能区分命令模式与末行模式即可。
vi区段删除步骤:
1. 在末行模式下使用:set nu显示行号
非必须,随光标移动vi右下角也会显示行号,能够正确找到并记录删除开始行
- 清除tomcat缓存的方法总结
dashuaifu
tomcat缓存
用tomcat容器,大家可能会发现这样的问题,修改jsp文件后,但用IE打开 依然是以前的Jsp的页面。
出现这种现象的原因主要是tomcat缓存的原因。
解决办法如下:
在jsp文件头加上
<meta http-equiv="Expires" content="0"> <meta http-equiv="kiben&qu
- 不要盲目的在项目中使用LESS CSS
dcj3sjt126com
Webless
如果你还不知道LESS CSS是什么东西,可以看一下这篇文章,是我一朋友写给新人看的《CSS——LESS》
不可否认,LESS CSS是个强大的工具,它弥补了css没有变量、无法运算等一些“先天缺陷”,但它似乎给我一种错觉,就是为了功能而实现功能。
比如它的引用功能
?
.rounded_corners{
- [入门]更上一层楼
dcj3sjt126com
PHPyii2
更上一层楼
通篇阅读完整个“入门”部分,你就完成了一个完整 Yii 应用的创建。在此过程中你学到了如何实现一些常用功能,例如通过 HTML 表单从用户那获取数据,从数据库中获取数据并以分页形式显示。你还学到了如何通过 Gii 去自动生成代码。使用 Gii 生成代码把 Web 开发中多数繁杂的过程转化为仅仅填写几个表单就行。
本章将介绍一些有助于更好使用 Yii 的资源:
- Apache HttpClient使用详解
eksliang
httpclienthttp协议
Http协议的重要性相信不用我多说了,HttpClient相比传统JDK自带的URLConnection,增加了易用性和灵活性(具体区别,日后我们再讨论),它不仅是客户端发送Http请求变得容易,而且也方便了开发人员测试接口(基于Http协议的),即提高了开发的效率,也方便提高代码的健壮性。因此熟练掌握HttpClient是很重要的必修内容,掌握HttpClient后,相信对于Http协议的了解会
- zxing二维码扫描功能
gundumw100
androidzxing
经常要用到二维码扫描功能
现给出示例代码
import com.google.zxing.WriterException;
import com.zxing.activity.CaptureActivity;
import com.zxing.encoding.EncodingHandler;
import android.app.Activity;
import an
- 纯HTML+CSS带说明的黄色导航菜单
ini
htmlWebhtml5csshovertree
HoverTree带说明的CSS菜单:纯HTML+CSS结构链接带说明的黄色导航
在线体验效果:http://hovertree.com/texiao/css/1.htm代码如下,保存到HTML文件可以看到效果:
<!DOCTYPE html >
<html >
<head>
<title>HoverTree
- fastjson初始化对性能的影响
kane_xie
fastjson序列化
之前在项目中序列化是用thrift,性能一般,而且需要用编译器生成新的类,在序列化和反序列化的时候感觉很繁琐,因此想转到json阵营。对比了jackson,gson等框架之后,决定用fastjson,为什么呢,因为看名字感觉很快。。。
网上的说法:
fastjson 是一个性能很好的 Java 语言实现的 JSON 解析器和生成器,来自阿里巴巴的工程师开发。
- 基于Mybatis封装的增删改查实现通用自动化sql
mengqingyu
DAO
1.基于map或javaBean的增删改查可实现不写dao接口和实现类以及xml,有效的提高开发速度。
2.支持自定义注解包括主键生成、列重复验证、列名、表名等
3.支持批量插入、批量更新、批量删除
<bean id="dynamicSqlSessionTemplate" class="com.mqy.mybatis.support.Dynamic
- js控制input输入框的方法封装(数字,中文,字母,浮点数等)
qifeifei
javascript js
在项目开发的时候,经常有一些输入框,控制输入的格式,而不是等输入好了再去检查格式,格式错了就报错,体验不好。 /** 数字,中文,字母,浮点数(+/-/.) 类型输入限制,只要在input标签上加上 jInput="number,chinese,alphabet,floating" 备注:floating属性只能单独用*/
funct
- java 计时器应用
tangqi609567707
javatimer
mport java.util.TimerTask; import java.util.Calendar; public class MyTask extends TimerTask { private static final int
- erlang输出调用栈信息
wudixiaotie
erlang
在erlang otp的开发中,如果调用第三方的应用,会有有些错误会不打印栈信息,因为有可能第三方应用会catch然后输出自己的错误信息,所以对排查bug有很大的阻碍,这样就要求我们自己打印调用的栈信息。用这个函数:erlang:process_display (self (), backtrace).需要注意这个函数只会输出到标准错误输出。
也可以用这个函数:erlang:get_s