- 隐私计算基础学习——数论基础知识(群、环、有限域、常用定理)
_Totoro_
隐私计算基础学习学习密码学可信计算技术安全
本文主要记录隐私计算中涉及的群、环、有限域的最基本的概念以及一些常用的数论定理,仅供参考。一、群1.群的定义群本质是一个集合GGG,这个集合上定义了一个运算⋅\cdot⋅(例如加法或乘法),满足下面的性质:封闭性:∀a,b∈G\foralla,b\inG∀a,b∈G,满足a⋅b∈Ga\cdotb\inGa⋅b∈G;结合律:∀a,b,c∈G\foralla,b,c\inG∀a,b,c∈G,满足(a⋅
- 基于大模型的短暂性脑缺血发作(TIA)全流程预测与干预系统技术方案
LCG元
大模型医疗研究-技术方向技术方案机器学习深度学习人工智能
目录一、系统架构总览二、核心模块详细设计三、系统集成方案四、系统部署拓扑图五、技术验证方案六、健康管理子系统七、安全与合规设计技术指标与性能保障八、HL7FHIR接口规范九、分层蒸馏方案十、多中心RCT研究设计十一、硬件选型成本优化方案跨模块集成工作流一、系统架构总览多源数据采集联邦学习数据湖大模型预测中枢术前预测系统术中决策系统术后管理系统手术方案生成麻醉动态调控并发症预警护理方案优化健康教育引
- 医疗AI跨机构建模实施总结:基于 Flower 联邦学习与差分隐私的实践指南
一、项目背景与目标在医疗人工智能(AI)模型的发展过程中,数据的可获得性和隐私保护始终是两个矛盾的关键点。传统集中式训练方式虽然性能理想,但往往受限于政策法规(如HIPAA、GDPR)无法获取跨机构医疗数据。而单一机构数据量不足、分布偏差等问题,又制约了模型的泛化能力。本项目旨在实现一个可部署、可扩展的联邦学习平台,帮助多个医疗机构在不共享原始数据的前提下共同训练预测模型。我们采用Flower框架
- MCP消息协议和传输协议(Java角度)
sky丶Mamba
LLMjava开发语言MCP大模型
作为Java程序员,你可以将MCP的消息协议和传输协议的关系类比为HTTP协议中“应用层”和“传输层”的分工。以下是具体解析:MCP定义了三种主流传输方式,适应不同场景需求:传输类型原理适用场景优缺点Stdio(标准输入/输出)通过本地进程的stdin/stdout通信本地命令行工具、敏感数据处理(如隐私计算)优点:简单、低延迟;缺点:仅限本地,不支持远程或高并发。SSE(Server-SentE
- 可信数据空间(Trusted Data Space)核心能力及行业赋能分析
小赖同学啊
testTechnologyPrecious算法
可信数据空间(TrustedDataSpace)作为新一代数据共享基础设施,通过技术创新和治理框架的结合,为多行业提供安全、可控的数据流通能力。以下是其核心能力及行业赋能分析:一、可信数据空间的六大核心能力能力维度技术实现关键价值数据主权保障基于区块链的分布式身份(DID)属性基加密(ABE)数据所有者保持控制权,实现"数据可用不可见"安全共享计算联邦学习(FL)多方安全计算(MPC)可信执行环境
- Java 大视界 -- Java 大数据机器学习模型在金融市场情绪分析与投资策略制定中的应用
青云交
大数据新视界Java大视界java大数据机器学习情绪分析智能投资多源数据
Java大视界--Java大数据机器学习模型在金融市场情绪分析与投资策略制定中的应用)引言:正文:一、金融情绪数据的立体化采集与治理1.1多模态数据采集架构1.2数据治理与特征工程二、Java机器学习模型的工程化实践2.1情感分析模型的深度优化2.2强化学习驱动的动态投资策略三、顶级机构实战:Java系统的金融炼金术四、技术前沿:Java与金融科技的未来融合4.1量子机器学习集成4.2联邦学习在合
- 医疗金融预测与语音识别中的模型优化及可解释性技术突破
智能计算研究中心
其他
内容概要随着人工智能技术的纵深发展,模型优化与可解释性技术正在重塑医疗诊断、金融预测及语音识别领域的应用范式。在医疗领域,基于自适应学习的动态参数调整机制,结合迁移学习的跨场景知识复用,显著提升了疾病筛查模型的泛化能力;而金融预测场景中,联邦学习框架通过分布式数据协作,在保障隐私安全的前提下,实现了风险预测模型的多维度优化。语音识别领域则依托边缘计算架构,将模型压缩技术与实时推理引擎结合,有效解决
- AI人工智能助力联邦学习通信效率优化的解决方案
AI智能应用
人工智能ai
AI驱动的联邦学习通信效率优化:从理论到实践的全面解决方案元数据框架标题AI驱动的联邦学习通信效率优化:从理论到实践的全面解决方案关键词联邦学习(FederatedLearning)、通信优化(CommunicationEfficiency)、AI赋能(AI-Enabled)、参数压缩(ParameterCompression)、客户端选择(ClientSelection)、联邦蒸馏(Federa
- 2022项目实训“异步分布式联邦学习”第五周报告
一、本周工作进度我在本周的工作进度主要集中于两个技术要点——即Axios和WebSocket。这两种技术方法有着本质上的不同,因而具体实现出来之后的效果也有所不同,下面将会分别说明。1.Axios(Ajax封装)首先要谈的内容是Axios,Axios是一个基于promise的HTTP库,是目前前端最流行的ajax请求库。Axios的优势在于,相比传统的Ajax本身是针对MVC的编程,Axios更加
- (阳:算法霸权 / 阴:数据确权)→当GDPR类法规覆盖53%经济体量时,催生出隐私计算新范式
百态老人
人工智能机器学习深度学习算法
当GDPR类法规覆盖53%经济体量时,隐私计算新范式的兴起可归因于以下多维度因素的相互作用:一、算法霸权与数据确权的矛盾激化算法霸权的危害大型科技公司通过算法歧视、大数据杀熟等手段形成垄断优势,利用数据优势操控用户行为,导致消费者权益受损。这种"算法黑箱"不仅加剧市场不公平,还阻碍数据要素的自由流动。例如,算法框架的底层逻辑掌握在少数企业手中,产生"数据黑箱"问题。数据确权的立法需求数据权属不明确
- 三体融合实战:Django+讯飞星火+Colossal-AI的企业级AI系统架构
IT莫染
FunctionModuleAI大模型工具及插件django人工智能系统架构讯飞星火Colossal-AIWebSocket
目录技术栈关键词:Django5.0讯飞星火4.0UltraColossal-AI1.2WebSocket联邦学习⚡核心架构设计️一、Django深度集成讯飞星火API(免费版)1.获取API凭证2.流式通信改造(解决高并发阻塞)3.Django视图层集成⚡二、Colossal-AI加速多模型适配策略1.私有模型微调方案2.多模型路由逻辑三、私有化部署安全加固方案1.三重安全防护体系2.请求签名防
- 大模型在通讯网络中的系统性应用架构
Deepoch
网络
一、网络架构智能化重构1.1空天地一体化组网优化智能拓扑动态调整:大模型通过分析卫星轨道数据、地面基站负载及用户分布,实时优化天地一体化网络拓扑。例如,在用户密集区域(如城市中心)自动增强低轨卫星与地面基站的协同,通过联邦学习实现跨区域资源调度,降低跨空口传输时延至0.3ms以下。量子密钥分发增强:结合量子通信卫星星座,大模型动态生成抗量子攻击的密钥分发策略。在卫星间链路中,采用LSTM预测信道衰
- 入门pytorch-联邦学习
四代机您发多少
pytorch人工智能python
本文联邦学习的代码引用于https://github.com/shaoxiongji/federated-learning本篇文章相当于带大家读一遍联邦学习的代码,同时加深了大家对联邦学习和Pytorch框架的理解。这里想简单介绍一下联邦学习。联邦学习说白了,就是假如有NNN个数据拥有者F1,...,FN{F_1,...,F_N}F1,...,FN,他们希望使用这些数据来训练机器学习模型,但是又各
- 长尾形分布论文速览三十篇【60-89】
木木阳
Long-tailed人工智能
长尾形分布速览(60-89)这些研究展示了LLMs在长尾数据分布、持续学习、异常检测、联邦学习、对比学习、知识图谱、推荐系统、多目标跟踪、标签修复、对象检测、医疗生物医学以及其他应用中的广泛应用。通过优化和创新,LLMs在这些领域展现了卓越的性能,并为解决长尾问题提供了有效的工具和方法。1.长尾持续学习与对抗学习长尾持续学习(Paper60):通过优化器状态重用来减少遗忘,提高在长尾任务中的持续学
- 跨区域智能电网负荷预测:基于 PaddleFL 的创新探索
暮雨哀尘
人工智能智能电网AIGCPaddleFL数据库python可视化
跨区域智能电网负荷预测:基于PaddleFL的创新探索摘要:本文聚焦跨区域智能电网负荷预测,提出基于PaddleFL框架的联邦学习方法,整合多地区智能电网数据,实现数据隐私保护下的高精度预测,为电网调度优化提供依据,推动智能电网发展。一、引言在当今社会,电力作为经济发展的命脉,其稳定供应对于保障社会生活的正常运转和生产的持续进行具有不可替代的重要性。而智能电网作为现代电力系统的重要发展方向,通过集
- 面向隐私保护的机器学习:联邦学习技术解析与应用
Blossom.118
机器学习与人工智能机器学习人工智能深度学习tensorflowpython神经网络cnn
在当今数字化时代,数据隐私和安全问题日益受到关注。随着《数据安全法》《个人信息保护法》等法律法规的实施,企业和机构在数据处理和分析过程中面临着越来越严格的合规要求。然而,机器学习模型的训练和优化往往需要大量的数据支持,这就产生了一个矛盾:如何在保护数据隐私的前提下,充分利用数据的价值进行机器学习模型的训练和优化?联邦学习(FederatedLearning)作为一种新兴的隐私保护技术,为解决这一问
- 《多设备协同训练:HarmonyOS联邦学习驱动Unity游戏AI进化》
爱学习的小齐哥哥
HarmonyOS5Unity游戏HarmonyOS5unity游戏引擎Unity游戏
随着游戏产业的智能化升级,游戏AI正从传统的规则驱动向数据驱动的“自进化”模式转型。然而,传统游戏AI训练面临数据孤岛、计算资源受限、隐私安全风险三大核心挑战:单设备训练难以处理复杂场景的海量数据,集中式训练需上传用户行为数据(侵犯隐私),且高性能计算依赖云端或专用硬件(成本高、延迟大)。在此背景下,HarmonyOS联邦学习与多设备协同训练的融合,为Unity游戏AI的智能化进化提供了突破性解决
- 区块链+隐私计算:长安链多方计算合约标准协议(CMMPC-1)发布
长安链开源社区
区块链
建设背景长安链与隐私计算的深度融合是构建分布式数据与价值流通网络的关键基石,可以在有效连接多元参与主体的同时确保数据的分布式、可追溯、可计算,以及隐私性与安全性。在长安链与隐私计算的融合实践中,开源社区提炼并抽象出多方计算场景下的共性任务、事件及方法等,进而制定了一套基于长安链的多方计算(MPC)标准协议——长安链多方计算合约标准协议(CM-CS-240423-MPC,简称CMMPC-1)。CMM
- AI人工智能加持,联邦学习医疗数据共享方案全解析
AI学长带你学AI
CS人工智能网络ai
AI人工智能加持,联邦学习医疗数据共享方案全解析关键词:联邦学习、医疗数据共享、隐私保护、人工智能、多方安全计算摘要:医疗数据是医学研究和临床决策的“黄金资源”,但患者隐私保护与数据孤岛问题却像两道高墙,阻碍着医疗AI的发展。本文将以“联邦学习”这一AI核心技术为钥匙,带您深入理解如何在不泄露原始数据的前提下,实现跨医院、跨机构的医疗数据共享与联合建模。我们将从生活场景出发,用“厨师合作研发新菜”
- PRUD币推动健康数据资产化,开启Web3隐私金融新时代
在全球健康科技与数据主权浪潮下,PRUD币(PrudentialUtility&DataToken)正成为Web3健康金融领域中的重要通证。项目通过链上身份绑定、健康行为证明、隐私计算与NFT机制,为用户打造了“健康数据资产化”的创新路径,为数据流转、权益分配与保险服务带来革命性升级。PRUD币生态构建在Solana高性能公链之上,采用去中心化身份识别协议(DID)与零知识证明技术(ZK-SNAR
- 深度学习框架与联邦学习:探究未来的AI发展趋势=======================摘要:本文将深入探讨深度学习框架与联邦学习的融合,分析其在现代AI领域的应用和发展趋势。我们将介绍深度学习框
深度学习框架与联邦学习:探究未来的AI发展趋势摘要:本文将深入探讨深度学习框架与联邦学习的融合,分析其在现代AI领域的应用和发展趋势。我们将介绍深度学习框架的基本原理、联邦学习的概念及其优势,并结合实际案例探讨二者的结合如何推动AI技术的创新与发展。一、深度学习框架:AI的基石深度学习框架是构建和训练深度学习模型的重要工具。它为开发者提供了便捷的工具和库,使得构建复杂的神经网络模型变得更加简单高效
- 同态加密类型详解:部分同态加密,全同态加密
胡乱编胡乱赢
同态加密区块链算法部分同态全同态
一、部分同态加密(PHE)仅支持单一运算(加法或乘法),效率较高,已实用化。乘法同态算法:RSA:基于大数分解问题,满足E(m1)⋅E(m2)=E(m1⋅m2),适用于安全投票和数字签名。ElGamal:基于离散对数问题,支持乘法同态,常用于区块链隐私保护。加法同态算法:Paillier:基于合数剩余类问题,满足E(m1)⋅E(m2)=E(m1+m2),广泛用于联邦学习中的梯度聚合(如FATE框架
- 边缘计算算法与自动驾驶安全优化实践
智能计算研究中心
其他
内容概要在自动驾驶系统的安全优化进程中,边缘计算算法通过分布式算力部署与实时数据处理能力,为车辆决策层构建了低时延、高容错的技术底座。本文系统性分析联邦学习与生成对抗网络(GAN)的融合机制,在保护数据隐私的同时提升多节点模型的动态适应能力,并通过可解释性算法对决策逻辑进行可视化解析,增强系统透明度。针对复杂行车场景,数据预处理与特征工程的双向协同显著优化了障碍物识别与路径规划的鲁棒性,结合F1值
- 鹰盾视频的AI行为检测是怎样的风控?
加油搞钱加油搞钱
人工智能音视频
引言在数字内容生态与安全防护交织的复杂环境下,视频风控已成为保障平台合规运营、用户信息安全的核心防线。传统基于规则匹配与简单统计的风控手段,在面对多样化、隐蔽化的违规行为时逐渐力不从心。鹰盾视频构建的AI行为检测风控体系,通过深度融合多模态分析、强化学习、联邦学习等前沿技术,打造了从数据感知、智能研判到动态响应的全链条风控闭环。本文将从技术架构、核心算法、工程实践及未来演进等维度,深入解析其AI行
- 【Web3.0与云架构】去中心化存储与计算
沐风—云端行者
云计算架构web3架构去中心化云原生
Web3.0与云架构:去中心化存储与计算一、技术背景与发展脉络二、技术特点与架构创新(1)存储层:从集中式到分布式网络(2)计算层:从中心化到边缘协同三、关键技术细节解析1.区块链共识机制2.隐私计算技术3.网络拓扑优化四、典型应用场景五、未来发展趋势六、挑战与应对一、技术背景与发展脉络Web3.0作为互联网的第三次范式革命,以去中心化、数据主权回归用户为核心目标,重构了传统云计算的底层逻辑。传统
- 联邦学习:用隐私保护助力CIFAR10建模
AI天才研究院
计算AI大模型企业级应用开发实战ChatGPT计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
联邦学习:用隐私保护助力CIFAR-10建模作者:禅与计算机程序设计艺术1.背景介绍1.1CIFAR-10数据集概述CIFAR-10数据集是一个广泛用于图像分类任务的基准数据集。它包含60,000张32x32彩色图像,分为10个类别,每个类别有6,000张图像。这些类别包括:飞机、汽车、鸟、猫、鹿、狗、青蛙、马、船和卡车。CIFAR-10数据集被广泛应用于图像分类算法的评估和比较。1.2传统机器学
- 基于Dirichlet分布的联邦学习数据分配
黑马算法创新
人工智能机器学习联邦学习异构联邦学习异构数据隐私保护
基于Dirichlet分布的联邦学习数据分配。其目标是将数据按照不均衡的方式分配到不同的客户端,模拟真实世界中客户端数据不均匀的情况。下面详细解释这段逻辑:标签排序和数据组织:首先,代码对数据集中的标签进行排序(labels_sorted)。这些标签代表着数据的类别。然后,通过将标签和相应的数据索引(即数据点的位置)配对,形成了一个名为class_by_labels的列表,每个元素是一个元组,其中
- 大模型训练新范式:隐私增强联邦学习架构与工程实践
尘烬海
架构rustwasmphp开发语言安全
一、传统联邦学习为何无法满足大模型隐私需求当前主流联邦学习框架如FedAvg在面对大模型时存在显著短板:python#标准FedAvg参数聚合伪代码暴露关键漏洞global_model=initialize_model()forroundinrange(total_rounds):client_updates=[]forclientinselected_clients:#本地训练梯度ΔW可被用于反
- 企业级大数据隐私保护:架构设计与实现方案
AI天才研究院
计算AI大模型应用入门实战与进阶AIAgent应用开发大数据ai
企业级大数据隐私保护:架构设计与实现方案关键词:大数据隐私保护、隐私计算、联邦学习、差分隐私、安全多方计算、数据合规、去标识化摘要:本文系统解析企业级大数据隐私保护的核心技术体系,从架构设计到具体实现方案展开深度探讨。通过分层架构设计覆盖数据全生命周期,结合差分隐私、联邦学习、安全多方计算等前沿技术,阐述数据收集、存储、处理、共享各环节的隐私保护机制。配套完整的数学模型推导、Python代码实现和
- 如何用数字人实现品效合一的传播
井云智能矩阵系统
人工智能
——从量子化建模到联邦学习的技术革命与商业实践一、行业痛点:传统营销的“三重割裂”2025年数据显示,78%的企业因营销效率低下错失市场机遇(快消品牌年损超500万元),核心矛盾聚焦于:品效割裂:品牌广告CTR<0.5%,效果广告复购率不足30%(MCN机构实测)渠道割裂:跨平台数据孤岛导致用户旅程断裂,转化漏斗流失率>65%人效割裂:真人主播日播极限4小时,人力成本占比超60%而如今,基于数字人
- Java开发中,spring mvc 的线程怎么调用?
小麦麦子
springmvc
今天逛知乎,看到最近很多人都在问spring mvc 的线程http://www.maiziedu.com/course/java/ 的启动问题,觉得挺有意思的,那哥们儿问的也听仔细,下面的回答也很详尽,分享出来,希望遇对遇到类似问题的Java开发程序猿有所帮助。
问题:
在用spring mvc架构的网站上,设一线程在虚拟机启动时运行,线程里有一全局
- maven依赖范围
bitcarter
maven
1.test 测试的时候才会依赖,编译和打包不依赖,如junit不被打包
2.compile 只有编译和打包时才会依赖
3.provided 编译和测试的时候依赖,打包不依赖,如:tomcat的一些公用jar包
4.runtime 运行时依赖,编译不依赖
5.默认compile
依赖范围compile是支持传递的,test不支持传递
1.传递的意思是项目A,引用
- Jaxb org.xml.sax.saxparseexception : premature end of file
darrenzhu
xmlprematureJAXB
如果在使用JAXB把xml文件unmarshal成vo(XSD自动生成的vo)时碰到如下错误:
org.xml.sax.saxparseexception : premature end of file
很有可能时你直接读取文件为inputstream,然后将inputstream作为构建unmarshal需要的source参数。InputSource inputSource = new In
- CSS Specificity
周凡杨
html权重Specificitycss
有时候对于页面元素设置了样式,可为什么页面的显示没有匹配上呢? because specificity
CSS 的选择符是有权重的,当不同的选择符的样式设置有冲突时,浏览器会采用权重高的选择符设置的样式。
规则:
HTML标签的权重是1
Class 的权重是10
Id 的权重是100
- java与servlet
g21121
servlet
servlet 搞java web开发的人一定不会陌生,而且大家还会时常用到它。
下面是java官方网站上对servlet的介绍: java官网对于servlet的解释 写道
Java Servlet Technology Overview Servlets are the Java platform technology of choice for extending and enha
- eclipse中安装maven插件
510888780
eclipsemaven
1.首先去官网下载 Maven:
http://www.apache.org/dyn/closer.cgi/maven/binaries/apache-maven-3.2.3-bin.tar.gz
下载完成之后将其解压,
我将解压后的文件夹:apache-maven-3.2.3,
并将它放在 D:\tools目录下,
即 maven 最终的路径是:D:\tools\apache-mave
- jpa@OneToOne关联关系
布衣凌宇
jpa
Nruser里的pruserid关联到Pruser的主键id,实现对一个表的增删改,另一个表的数据随之增删改。
Nruser实体类
//*****************************************************************
@Entity
@Table(name="nruser")
@DynamicInsert @Dynam
- 我的spring学习笔记11-Spring中关于声明式事务的配置
aijuans
spring事务配置
这两天学到事务管理这一块,结合到之前的terasoluna框架,觉得书本上讲的还是简单阿。我就把我从书本上学到的再结合实际的项目以及网上看到的一些内容,对声明式事务管理做个整理吧。我看得Spring in Action第二版中只提到了用TransactionProxyFactoryBean和<tx:advice/>,定义注释驱动这三种,我承认后两种的内容很好,很强大。但是实际的项目当中
- java 动态代理简单实现
antlove
javahandlerproxydynamicservice
dynamicproxy.service.HelloService
package dynamicproxy.service;
public interface HelloService {
public void sayHello();
}
dynamicproxy.service.impl.HelloServiceImpl
package dynamicp
- JDBC连接数据库
百合不是茶
JDBC编程JAVA操作oracle数据库
如果我们要想连接oracle公司的数据库,就要首先下载oralce公司的驱动程序,将这个驱动程序的jar包导入到我们工程中;
JDBC链接数据库的代码和固定写法;
1,加载oracle数据库的驱动;
&nb
- 单例模式中的多线程分析
bijian1013
javathread多线程java多线程
谈到单例模式,我们立马会想到饿汉式和懒汉式加载,所谓饿汉式就是在创建类时就创建好了实例,懒汉式在获取实例时才去创建实例,即延迟加载。
饿汉式:
package com.bijian.study;
public class Singleton {
private Singleton() {
}
// 注意这是private 只供内部调用
private static
- javascript读取和修改原型特别需要注意原型的读写不具有对等性
bijian1013
JavaScriptprototype
对于从原型对象继承而来的成员,其读和写具有内在的不对等性。比如有一个对象A,假设它的原型对象是B,B的原型对象是null。如果我们需要读取A对象的name属性值,那么JS会优先在A中查找,如果找到了name属性那么就返回;如果A中没有name属性,那么就到原型B中查找name,如果找到了就返回;如果原型B中也没有
- 【持久化框架MyBatis3六】MyBatis3集成第三方DataSource
bit1129
dataSource
MyBatis内置了数据源的支持,如:
<environments default="development">
<environment id="development">
<transactionManager type="JDBC" />
<data
- 我程序中用到的urldecode和base64decode,MD5
bitcarter
cMD5base64decodeurldecode
这里是base64decode和urldecode,Md5在附件中。因为我是在后台所以需要解码:
string Base64Decode(const char* Data,int DataByte,int& OutByte)
{
//解码表
const char DecodeTable[] =
{
0, 0, 0, 0, 0, 0
- 腾讯资深运维专家周小军:QQ与微信架构的惊天秘密
ronin47
社交领域一直是互联网创业的大热门,从PC到移动端,从OICQ、MSN到QQ。到了移动互联网时代,社交领域应用开始彻底爆发,直奔黄金期。腾讯在过去几年里,社交平台更是火到爆,QQ和微信坐拥几亿的粉丝,QQ空间和朋友圈各种刷屏,写心得,晒照片,秀视频,那么谁来为企鹅保驾护航呢?支撑QQ和微信海量数据背后的架构又有哪些惊天内幕呢?本期大讲堂的内容来自今年2月份ChinaUnix对腾讯社交网络运营服务中心
- java-69-旋转数组的最小元素。把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素
bylijinnan
java
public class MinOfShiftedArray {
/**
* Q69 旋转数组的最小元素
* 把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个排好序的数组的一个旋转,输出旋转数组的最小元素。
* 例如数组{3, 4, 5, 1, 2}为{1, 2, 3, 4, 5}的一个旋转,该数组的最小值为1。
*/
publ
- 看博客,应该是有方向的
Cb123456
反省看博客
看博客,应该是有方向的:
我现在就复习以前的,在补补以前不会的,现在还不会的,同时完善完善项目,也看看别人的博客.
我刚突然想到的:
1.应该看计算机组成原理,数据结构,一些算法,还有关于android,java的。
2.对于我,也快大四了,看一些职业规划的,以及一些学习的经验,看看别人的工作总结的.
为什么要写
- [开源与商业]做开源项目的人生活上一定要朴素,尽量减少对官方和商业体系的依赖
comsci
开源项目
为什么这样说呢? 因为科学和技术的发展有时候需要一个平缓和长期的积累过程,但是行政和商业体系本身充满各种不稳定性和不确定性,如果你希望长期从事某个科研项目,但是却又必须依赖于某种行政和商业体系,那其中的过程必定充满各种风险。。。
所以,为避免这种不确定性风险,我
- 一个 sql优化 ([精华] 一个查询优化的分析调整全过程!很值得一看 )
cwqcwqmax9
sql
见 http://www.itpub.net/forum.php?mod=viewthread&tid=239011
Web翻页优化实例
提交时间: 2004-6-18 15:37:49 回复 发消息
环境:
Linux ve
- Hibernat and Ibatis
dashuaifu
Hibernateibatis
Hibernate VS iBATIS 简介 Hibernate 是当前最流行的O/R mapping框架,当前版本是3.05。它出身于sf.net,现在已经成为Jboss的一部分了 iBATIS 是另外一种优秀的O/R mapping框架,当前版本是2.0。目前属于apache的一个子项目了。 相对Hibernate“O/R”而言,iBATIS 是一种“Sql Mappi
- 备份MYSQL脚本
dcj3sjt126com
mysql
#!/bin/sh
# this shell to backup mysql
#
[email protected] (QQ:1413161683 DuChengJiu)
_dbDir=/var/lib/mysql/
_today=`date +%w`
_bakDir=/usr/backup/$_today
[ ! -d $_bakDir ] && mkdir -p
- iOS第三方开源库的吐槽和备忘
dcj3sjt126com
ios
转自
ibireme的博客 做iOS开发总会接触到一些第三方库,这里整理一下,做一些吐槽。 目前比较活跃的社区仍旧是Github,除此以外也有一些不错的库散落在Google Code、SourceForge等地方。由于Github社区太过主流,这里主要介绍一下Github里面流行的iOS库。 首先整理了一份
Github上排名靠
- html wlwmanifest.xml
eoems
htmlxml
所谓优化wp_head()就是把从wp_head中移除不需要元素,同时也可以加快速度。
步骤:
加入到function.php
remove_action('wp_head', 'wp_generator');
//wp-generator移除wordpress的版本号,本身blog的版本号没什么意义,但是如果让恶意玩家看到,可能会用官网公布的漏洞攻击blog
remov
- 浅谈Java定时器发展
hacksin
java并发timer定时器
java在jdk1.3中推出了定时器类Timer,而后在jdk1.5后由Dou Lea从新开发出了支持多线程的ScheduleThreadPoolExecutor,从后者的表现来看,可以考虑完全替代Timer了。
Timer与ScheduleThreadPoolExecutor对比:
1.
Timer始于jdk1.3,其原理是利用一个TimerTask数组当作队列
- 移动端页面侧边导航滑入效果
ini
jqueryWebhtml5cssjavascirpt
效果体验:http://hovertree.com/texiao/mobile/2.htm可以使用移动设备浏览器查看效果。效果使用到jquery-2.1.4.min.js,该版本的jQuery库是用于支持HTML5的浏览器上,不再兼容IE8以前的浏览器,现在移动端浏览器一般都支持HTML5,所以使用该jQuery没问题。HTML文件代码:
<!DOCTYPE html>
<h
- AspectJ+Javasist记录日志
kane_xie
aspectjjavasist
在项目中碰到这样一个需求,对一个服务类的每一个方法,在方法开始和结束的时候分别记录一条日志,内容包括方法名,参数名+参数值以及方法执行的时间。
@Override
public String get(String key) {
// long start = System.currentTimeMillis();
// System.out.println("Be
- redis学习笔记
MJC410621
redisNoSQL
1)nosql数据库主要由以下特点:非关系型的、分布式的、开源的、水平可扩展的。
1,处理超大量的数据
2,运行在便宜的PC服务器集群上,
3,击碎了性能瓶颈。
1)对数据高并发读写。
2)对海量数据的高效率存储和访问。
3)对数据的高扩展性和高可用性。
redis支持的类型:
Sring 类型
set name lijie
get name lijie
set na
- 使用redis实现分布式锁
qifeifei
在多节点的系统中,如何实现分布式锁机制,其中用redis来实现是很好的方法之一,我们先来看一下jedis包中,有个类名BinaryJedis,它有个方法如下:
public Long setnx(final byte[] key, final byte[] value) {
checkIsInMulti();
client.setnx(key, value);
ret
- BI并非万能,中层业务管理报表要另辟蹊径
张老师的菜
大数据BI商业智能信息化
BI是商业智能的缩写,是可以帮助企业做出明智的业务经营决策的工具,其数据来源于各个业务系统,如ERP、CRM、SCM、进销存、HER、OA等。
BI系统不同于传统的管理信息系统,他号称是一个整体应用的解决方案,是融入管理思想的强大系统:有着系统整体的设计思想,支持对所有
- 安装rvm后出现rvm not a function 或者ruby -v后提示没安装ruby的问题
wudixiaotie
function
1.在~/.bashrc最后加入
[[ -s "$HOME/.rvm/scripts/rvm" ]] && source "$HOME/.rvm/scripts/rvm"
2.重新启动terminal输入:
rvm use ruby-2.2.1 --default
把当前安装的ruby版本设为默