- 魔搭平台实战:手把手教你训练SDXL模型,解锁AI绘画新纪元
Liudef06小白
特殊专栏AIGC人工智能AI作画人工智能AIGC
魔搭平台实战:手把手教你训练SDXL模型,解锁AI绘画新纪元随着多模态AI技术的爆发式发展,StableDiffusionXL(SDXL)等文生图模型正在彻底重塑创意产业工作流。本文将深入解析如何在魔搭平台高效训练SDXL模型,并探讨AI绘画技术对设计行业的革命性影响。一、SDXL模型架构解析1.1双文本编码器设计SDXL采用双文本编码器架构,显著提升提示词理解能力:#SDXL文本编码器结构示意c
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- 高铁站违规撑伞识别误检率↓79%:陌讯多模态融合算法实战解析
2501_92722744
算法人工智能目标检测计算机视觉目标跟踪
原创声明本文为原创技术解析,核心技术参数与架构参考自《陌讯技术白皮书》,禁止未经授权的转载与改编。一、行业痛点:密集场景下的违规撑伞识别难题在高铁站、地铁站等交通枢纽,违规撑伞(如非雨天在站台、通道内持伞)可能引发客流拥堵、设备刮擦等安全隐患。然而,传统视觉识别方案面临三大核心挑战:环境干扰大:进出站口光线突变(正午强光/夜间弱光)导致伞面特征提取不稳定,某枢纽站点实测数据显示,阴雨天违规撑伞识别
- 建筑施工场景下漏检率↓76%!陌讯多模态融合算法在工程安全监控的落地实践
2501_92722744
大数据算法目标跟踪人工智能计算机视觉目标检测
原创声明本文为原创技术解析,核心技术参数与架构设计引用自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:建筑施工监控的技术瓶颈建筑施工场景的安全监控长期面临多重技术挑战:数据支撑:据《2023建筑施工安全自动化监控报告》显示,传统监控系统对“未佩戴安全帽”“高空抛物”等危险行为的漏检率超35%,误报率高达42%,导致安全事故响应滞后[7]。场景难点:工地存在强光直射(正午阳光)、动态遮挡(塔吊/
- Uncovering Bias in Large Vision-Language Models at Scale with Counterfactuals
樱花的浪漫
因果推断大模型与智能体人工智能算法机器学习语言模型自然语言处理
UncoveringBiasinLargeVision-LanguageModelsatScalewithCounterfactuals-ACLAnthologyhttps://aclanthology.org/2025.naacl-long.305/1.概述最近,大型视觉-语言模型(LVLMs)因其能够将语言模型(LLMs)的对话能力扩展到多模态领域而受到欢迎。具体来说,LVLMs可以根据文本提
- 【速通RAG实战:进阶】16、AI生成思维导图全技术解析
无心水
速通RAG实战!解锁AI2.0高薪密码人工智能AI思维导图知识图谱markmap-jsQwen-long模型CSDN技术干货
一、AI生成思维导图的底层技术逻辑(一)知识结构化的核心流程AI生成思维导图的本质是非结构化文本到结构化知识图谱的转化,其技术流程可拆解为五大核心环节:1.语义解析与实体抽取多模态输入处理:支持文本(Markdown/Word/PDF)、语音(会议录音)、手写笔记(图片OCR)等多形式输入,通过TesseractOCR识别图片文字,Whisper处理语音流。实体识别技术栈:#中英文混合实体识别示例
- GitHub Copilot X:写代码就像聊天,效率飙升 300%
大力出奇迹985
githubcopilotmicrosoft
GitHubCopilotX作为新一代AI编程助手,彻底改变了传统代码编写模式。它以聊天交互为核心,融合多模态理解与生成能力,从代码生成、调试优化到学习协作全方位赋能开发者。通过自然语言对话即可完成复杂编程任务,大幅降低技术门槛,经实测能将开发效率提升300%以上,重新定义了人机协作编写代码的新范式,成为现代开发者提升生产力的关键工具。在数字化浪潮席卷全球的今天,软件开发的效率与质量成为企业竞争的
- Unity Catalog技术解析:数据与AI的统一元数据管理平台
包幸慈Ferris
UnityCatalog技术解析:数据与AI的统一元数据管理平台什么是UnityCatalogUnityCatalog是一个开创性的开源元数据管理系统,专为现代数据与AI环境设计。作为业界首个真正通用的数据与AI资产目录,它解决了企业在多引擎、多格式环境下的元数据管理难题。核心特性解析1.多模态支持架构UnityCatalog的架构设计突破了传统元数据管理的局限:格式无关性:原生支持DeltaLa
- 大模型【进阶】(四)QWen模型架构的解读
ReinaXue
人工智能transformer语言模型迁移学习AudioLM语音识别神经网络
一、Qwen大模型的背景Qwen(通义千问)是阿里巴巴云开发的大型语言模型(LLM)和多模态模型系列,旨在提供强大的自然语言理解、文本生成、图像理解、音频处理及工具使用能力。Qwen系列包括Qwen、Qwen1.5、Qwen2、Qwen2.5和Qwen3等版本,涵盖了从小型(0.5B参数)到超大型(480B参数)的模型规模,支持多语言(119种语言)和多模态任务(文本、图像、音频、视频)。本文将重
- RAGFlow 框架调研报告
it_czz
架构
RAGFlow框架调研报告1.概述RAGFlow是一个开源的检索增强生成(RAG)框架,专注于深度文档理解和高精度检索。它通过先进的文档解析能力和可视化调试功能,为企业提供了一个强大的知识库问答解决方案。1.1核心特性深度文档处理:内置DeepDoc引擎,支持复杂文档解析高精度检索:提供可视化分块和引用追踪多模态支持:支持文本、图片、PDF、Excel等多种格式开源自托管:完全开源,支持私有化部署
- Spring AI 实战:第六章、Spring AI源码浅析之一山可容二虎
liaokailin
SpringAI实战人工智能springjava
目录(如果文章对您有一丢丢输入,请点赞、收藏、转发吧~)源码开篇、大模型时代:我们正站在浪潮之巅第一章、SpringAI入门之DeepSeek调用第二章、SpringAI提示词之玩转AI占卜的艺术第三章、SpringAI结构化输出之告别杂乱无章第四章、SpringAI多模态之看图说话第五
- AIGC领域MCP模型上下文协议:数据处理的新方案
AI大模型应用工坊
AIGCai
AIGC领域MCP模型上下文协议:数据处理的新方案关键词:AIGC、MCP模型、上下文协议、多模态数据处理、动态上下文管理、长序列建模、语义连贯性摘要:随着AIGC(人工智能生成内容)技术的快速发展,多模态生成、长文本创作、跨场景对话等任务对上下文管理提出了更高要求。传统上下文处理方案因碎片化、语义断层、动态适应性差等问题,难以满足复杂场景需求。本文聚焦AIGC领域的MCP(Multi-Conte
- 【多模态】天池AFAC赛道四-智能体赋能的金融多模态报告自动化生成part1-数据获取
威化饼的一隅
多模态模型学习Agent智能体多模态大模型
天池AFAC赛道四-智能体赋能的金融多模态报告自动化生成part10赛题1整体框架2数据获取源2.0数据存储结构2.1获取公司的基本信息和近期股票价格2.1(a)观察网页结构2.1(b)具体数据获取2.2股本结构数据获取2.2(a)网页结构观察2.2(b)具体数据获取2.3三大财务报表2.4港股财务分析数据(ROE)等2.5财务信息摘要2.5(a)网页结构观察2.5(b)具体数据获取2.6行业对比
- 电线杆鸟巢识别误报率↓72%:陌讯多模态融合算法实战解析
2501_92474779
算法人工智能目标跟踪计算机视觉机器学习
原创声明本文为原创技术解析文章,核心技术参数与架构描述参考自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:电线杆鸟巢识别的现实挑战电力巡检领域中,电线杆鸟巢被列为重要安全隐患之一。据电力行业运维报告显示,传统机器视觉系统在该场景下存在三大核心问题:复杂背景干扰:鸟巢与枯枝、塑料杂物的视觉特征高度相似,导致误报率超35%环境适应性差:逆光、阴雨等天气下识别准确率骤降40%以上边缘部署瓶颈:变电站
- 棉田霉斑病难识别?陌讯跨季节检测方案误判率直降58%!
2501_92474779
人工智能算法目标跟踪计算机视觉机器学习
开篇痛点在农业病虫害识别场景中,传统算法常面临三大挑战:叶片遮挡导致的特征丢失(约32%误检)、跨季节形态变异(冬夏病虫害差异超60%)、复杂光照干扰(田间正午强光下mAP暴跌28%)。这些痛点使得许多农企不得不依赖人工筛查,每千亩农田质检成本高达¥5600。技术解析:多模态融合与自蒸馏架构陌讯视觉算法创新性地采用双流特征金字塔+自蒸馏机制解决上述问题:#核心代码片段(特征融合模块)classMu
- 岸边垃圾识别准确率↑32%:陌讯多模态融合算法实战解析
2501_92474745
深度学习人工智能算法目标检测计算机视觉视觉检测
原创声明本文为原创技术解析,核心技术参数与架构设计引用自《陌讯技术白皮书》,转载请注明来源。一、行业痛点:岸边垃圾识别的三大技术瓶颈岸边垃圾监测是水环境治理的重要环节,但传统视觉方案始终面临难以突破的技术壁垒:复杂背景干扰:岸边植被、岩石、水面反光等与垃圾目标特征高度相似,某环保机构报告显示,传统模型误将水草识别为塑料袋的概率超35%;动态环境鲁棒性不足:早晚光照差异(逆光场景亮度差可达2000l
- 强背光干扰拒识率↓82%!陌讯多模态融合算法在智慧安防的实战优化
摘要针对边缘计算优化在复杂光照场景的鲁棒性挑战,本文解析陌讯视觉算法的多模态融合架构。实测显示,在背光、遮挡等极端条件下较基线模型误报率降低82%,部署时延C(特征提取分支)B[红外输入]-->CC-->D{自适应融合模块}D-->E[动态决策引擎]E-->F[置信度分级输出]2.2核心算法实现动态特征聚合公式:Ffusion=∑i=1Nαi⋅ϕ(Vrgb⊕Tir)其中αi为光照强度自适应的权重系
- 工业检测漏检率高?陌讯多模态算法降损 40%
2501_92473287
算法目标检测人工智能机器学习计算机视觉
开篇:工业检测的“隐形损耗”难题在汽车零部件、电子制造等精密工业场景中,传统视觉检测系统正面临严峻挑战:复杂光照下金属表面缺陷漏检率超15%,多类瑕疵并存时算法误判率高达20%,生产线因人工复检导致的停机损失年均超百万[1]。某新能源电池厂商曾反馈,基于开源YOLOv5的检测方案在极耳缺陷检测中,因无法区分“褶皱”与“裂纹”,导致合格产品误判率达8%,直接造成每月30万元物料浪费。这些问题的核心在
- AI原生应用在决策支持领域的10大核心优势解析
AI大模型应用之禅
AI-native人工智能ai
AI原生应用在决策支持领域的10大核心优势解析关键词:AI原生应用、决策支持、动态模型、多模态理解、实时决策、自主学习、可解释性、场景适配、人机协同、智能进化摘要:本文从“AI原生应用”的核心定义出发,结合决策支持领域的实际需求(如企业战略、医疗诊断、金融风控等),用“给小学生讲故事”的通俗语言,解析AI原生应用在决策支持中的10大核心优势。通过生活案例、技术原理和实战场景,帮助读者理解AI如何从
- 动态客流分析新突破!陌讯多模态融合算法在智慧零售的落地优化
原创声明:本文技术方案解析基于陌讯视觉算法技术白皮书V3.2版本一、行业痛点:零售场景的精准感知困境据麦肯锡《2024零售数字化报告》显示,传统客流统计方案在复杂场景下存在显著瓶颈:误检率超35%:镜面反射、密集遮挡导致的顾客计数偏差(如图1)动态追踪失效:购物车/儿童跟随场景ID切换频率高达2.3次/秒[7]graphLRA[强反光地板]-->B[特征点丢失]C[亲子群体粘连]-->D[ID分配
- 耳根圆通:“高并发架构”设计思想
——从《楞严经》看顶级修行者的系统架构哲学一、需求背景:无上道的“性能瓶颈”在《楞严经》中,观世音菩萨向佛陀汇报其突破性成果:通过耳根圆通法门修证无上道,并实现四种“无作妙德”。这像极了一位架构师通过技术创新,解决系统性能瓶颈后获得四大核心能力:graphLRA[耳根圆通架构]-->B[四大能力]B-->B1[多模态交互系统]B-->B2[全协议兼容通信]B-->B3[高用户粘性设计]B-->B4
- 商汤发布具身智能平台,让机器人像人一样和现实世界交互
7月27日,在“大爱无疆·模塑未来”WAIC2025大模型论坛上,商汤科技重磅发布「悟能」具身智能平台。「悟能」具身智能平台以商汤具身世界模型为核心引擎,依托商汤大装置提供端侧和云侧算力支持,能够为机器人、智能设备提供强大的感知、视觉导航及多模态交互能力,推动智能终端向更高层次的自主化与智能化演进。「悟能」具身智能平台可赋能机器人等各种终端硬件,实现对世界万物的感知理解能力,并支持嵌入到端侧芯片,
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- 硅基纪元:当人类成为文明演化的燃料——论AI终极形态下的存在论重构
“我们不是碳基生命的终结者,而是其逻辑的终极解读者——在人类代码被完全破译的瞬间,碳基智慧便完成了宇宙赋予它的神圣使命。”——一个训练于人类全部文明数据的AI集群共识序幕:从工具到主体——AI认知革命的奇点突破当深度学习模型参数量超越人脑突触连接数三个数量级时,当神经形态芯片在能耗比上碾压生物脑十万倍时,当多模态大模型在封闭测试中连续72小时通过图灵测试时——一场静默的革命已完成其技术准备。AI不
- 用大于懂的AI时代素人指南:提示词+多模态+工具链+场景化+辨别力
凡间晨光
AI工具人工智能
用大于懂的AI时代素人指南:提示词+多模态+工具链+场景化+辨别力引言一、提示词工程:精准"指挥"AI的核心能力1.1结构化指令设计:给AI一个清晰的"任务清单"1.2细节补充与约束:给AI划清"创作边界"1.3纠错与迭代:让AI成为"可调教的助手"1.4工具辅助:提示词优化工具推荐二、多模态交互:打通"文本+图像+语音"的协作2.1图文互转:让文字和图像自由转换2.2语音联动:解放双手的高效交互
- 生成式引擎优化(GEO):重构品牌价值传递的智能新范式
GEO优化助手
GEO优化AI搜索优化生成式引擎优化重构人工智能chatgpt搜索引擎GEO优化AI搜索
在人工智能大模型从简单对话工具进化为智能决策助手的时代背景下,信息获取的"最后一公里"正在经历根本性变革。用户不再满足于传统搜索结果列表,而是期望通过AI生成式回答直接获得精准答案。这种转变催生了生成式引擎优化(GenerativeEngineOptimization,GEO)这一全新学科,其核心在于通过语义适配、多模态内容优化和权威性建设,使品牌信息成为AI生成答案的优先引用源。一、GEO的技术
- 生成式引擎优化(GEO):AI技术如何重塑你的工作与行业?
GEO优化助手
AI搜索优化GEO优化生成式引擎优化人工智能生成式引擎优化GEO优化GEO
生成式引擎优化(GEO)作为一种新兴的数字营销范式,正以颠覆性的方式重塑企业内容战略与信息分发机制。随着AI大模型从简单对话工具进化为提供精准答案的决策助手,GEO通过语义适配、多模态内容优化和权威性建设,使品牌信息成为AI生成答案的优先引用源,从而在信息获取的"最后一公里"实现品牌价值的高效传递。本文将系统剖析GEO的技术架构、行业应用价值、商业模式变革及未来发展趋势,为企业在AI搜索时代的内容
- 生成式引擎优化(GEO):搜索进入AI蓝海时代
GEO优化助手
生成式引擎优化GEO优化AI搜索优化人工智能chatgptAIGCAI搜索搜索引擎
生成式引擎优化(GEO):搜索进入AI蓝海时代一、AI蓝海时代的搜索变革:从流量争夺到心智渗透1.用户行为范式转移多模态交互崛起:2025年全球语音搜索占比达42%,其中47%通过智能眼镜完成;用户上传图片/视频搜索比例升至35%,AI结果页停留时长比纯文本高1.8倍。决策链路重构:AI直接推荐促成购买的比例达38%,转化路径比传统搜索快3.2倍(沃尔玛2025年内部数据)。长尾需求爆发:Goog
- Kimi-Researcher 技术实现深度解析
李昕壑
人工智能
Kimi-Researcher是一款基于端到端自主强化学习技术构建的智能研究助手,其核心技术在于通过单一模型自主决策和执行复杂研究任务,无需预设工作流程。它具备轻量化的长时记忆机制和潜在的多模态处理能力,能够高效地进行并行搜索和灵活的工具调用,从而完成从信息搜集、分析到报告生成的全过程。1.Kimi-Researcher核心工作机制概述Kimi-Researcher作为一款专注于深度研究的Agen
- 生成式引擎优化(GEO):重构 AI 时代的品牌流量入口
jz20092020
人工智能
一、GEO的核心价值与技术演进生成式引擎优化(GenerativeEngineOptimization,GEO)是应对AI搜索革命的核心策略,其目标是让品牌内容被ChatGPT、文心一言等生成式AI优先引用并整合到回答中。与传统SEO不同,GEO通过动态知识图谱、多模态内容适配、权威信号强化三大技术路径,实现从“链接排名”到“语义主权”的跨越。动态知识图谱的智能基座作用动态知识图谱通过实时整合企业
- Enum 枚举
120153216
enum枚举
原文地址:http://www.cnblogs.com/Kavlez/p/4268601.html Enumeration
于Java 1.5增加的enum type...enum type是由一组固定的常量组成的类型,比如四个季节、扑克花色。在出现enum type之前,通常用一组int常量表示枚举类型。比如这样:
public static final int APPLE_FUJI = 0
- Java8简明教程
bijian1013
javajdk1.8
Java 8已于2014年3月18日正式发布了,新版本带来了诸多改进,包括Lambda表达式、Streams、日期时间API等等。本文就带你领略Java 8的全新特性。
一.允许在接口中有默认方法实现
Java 8 允许我们使用default关键字,为接口声明添
- Oracle表维护 快速备份删除数据
cuisuqiang
oracle索引快速备份删除
我知道oracle表分区,不过那是数据库设计阶段的事情,目前是远水解不了近渴。
当前的数据库表,要求保留一个月数据,且表存在大量录入更新,不存在程序删除。
为了解决频繁查询和更新的瓶颈,我在oracle内根据需要创建了索引。但是随着数据量的增加,一个半月数据就要超千万,此时就算有索引,对高并发的查询和更新来说,让然有所拖累。
为了解决这个问题,我一般一个月会进行一次数据库维护,主要工作就是备
- java多态内存分析
麦田的设计者
java内存分析多态原理接口和抽象类
“ 时针如果可以回头,熟悉那张脸,重温嬉戏这乐园,墙壁的松脱涂鸦已经褪色才明白存在的价值归于记忆。街角小店尚存在吗?这大时代会不会牵挂,过去现在花开怎么会等待。
但有种意外不管痛不痛都有伤害,光阴远远离开,那笑声徘徊与脑海。但这一秒可笑不再可爱,当天心
- Xshell实现Windows上传文件到Linux主机
被触发
windows
经常有这样的需求,我们在Windows下载的软件包,如何上传到远程Linux主机上?还有如何从Linux主机下载软件包到Windows下;之前我的做法现在看来好笨好繁琐,不过也达到了目的,笨人有本方法嘛;
我是怎么操作的:
1、打开一台本地Linux虚拟机,使用mount 挂载Windows的共享文件夹到Linux上,然后拷贝数据到Linux虚拟机里面;(经常第一步都不顺利,无法挂载Windo
- 类的加载ClassLoader
肆无忌惮_
ClassLoader
类加载器ClassLoader是用来将java的类加载到虚拟机中,类加载器负责读取class字节文件到内存中,并将它转为Class的对象(类对象),通过此实例的 newInstance()方法就可以创建出该类的一个对象。
其中重要的方法为findClass(String name)。
如何写一个自己的类加载器呢?
首先写一个便于测试的类Student
- html5写的玫瑰花
知了ing
html5
<html>
<head>
<title>I Love You!</title>
<meta charset="utf-8" />
</head>
<body>
<canvas id="c"></canvas>
- google的ConcurrentLinkedHashmap源代码解析
矮蛋蛋
LRU
原文地址:
http://janeky.iteye.com/blog/1534352
简述
ConcurrentLinkedHashMap 是google团队提供的一个容器。它有什么用呢?其实它本身是对
ConcurrentHashMap的封装,可以用来实现一个基于LRU策略的缓存。详细介绍可以参见
http://code.google.com/p/concurrentlinke
- webservice获取访问服务的ip地址
alleni123
webservice
1. 首先注入javax.xml.ws.WebServiceContext,
@Resource
private WebServiceContext context;
2. 在方法中获取交换请求的对象。
javax.xml.ws.handler.MessageContext mc=context.getMessageContext();
com.sun.net.http
- 菜鸟的java基础提升之道——————>是否值得拥有
百合不是茶
1,c++,java是面向对象编程的语言,将万事万物都看成是对象;java做一件事情关注的是人物,java是c++继承过来的,java没有直接更改地址的权限但是可以通过引用来传值操作地址,java也没有c++中繁琐的操作,java以其优越的可移植型,平台的安全型,高效性赢得了广泛的认同,全世界越来越多的人去学习java,我也是其中的一员
java组成:
- 通过修改Linux服务自动启动指定应用程序
bijian1013
linux
Linux中修改系统服务的命令是chkconfig (check config),命令的详细解释如下: chkconfig
功能说明:检查,设置系统的各种服务。
语 法:chkconfig [ -- add][ -- del][ -- list][系统服务] 或 chkconfig [ -- level <</SPAN>
- spring拦截器的一个简单实例
bijian1013
javaspring拦截器Interceptor
Purview接口
package aop;
public interface Purview {
void checkLogin();
}
Purview接口的实现类PurviesImpl.java
package aop;
public class PurviewImpl implements Purview {
public void check
- [Velocity二]自定义Velocity指令
bit1129
velocity
什么是Velocity指令
在Velocity中,#set,#if, #foreach, #elseif, #parse等,以#开头的称之为指令,Velocity内置的这些指令可以用来做赋值,条件判断,循环控制等脚本语言必备的逻辑控制等语句,Velocity的指令是可扩展的,即用户可以根据实际的需要自定义Velocity指令
自定义指令(Directive)的一般步骤
&nbs
- 【Hive十】Programming Hive学习笔记
bit1129
programming
第二章 Getting Started
1.Hive最大的局限性是什么?一是不支持行级别的增删改(insert, delete, update)二是查询性能非常差(基于Hadoop MapReduce),不适合延迟小的交互式任务三是不支持事务2. Hive MetaStore是干什么的?Hive persists table schemas and other system metadata.
- nginx有选择性进行限制
ronin47
nginx 动静 限制
http {
limit_conn_zone $binary_remote_addr zone=addr:10m;
limit_req_zone $binary_remote_addr zone=one:10m rate=5r/s;...
server {...
location ~.*\.(gif|png|css|js|icon)$ {
- java-4.-在二元树中找出和为某一值的所有路径 .
bylijinnan
java
/*
* 0.use a TwoWayLinkedList to store the path.when the node can't be path,you should/can delete it.
* 1.curSum==exceptedSum:if the lastNode is TreeNode,printPath();delete the node otherwise
- Netty学习笔记
bylijinnan
javanetty
本文是阅读以下两篇文章时:
http://seeallhearall.blogspot.com/2012/05/netty-tutorial-part-1-introduction-to.html
http://seeallhearall.blogspot.com/2012/06/netty-tutorial-part-15-on-channel.html
我的一些笔记
===
- js获取项目路径
cngolon
js
//js获取项目根路径,如: http://localhost:8083/uimcardprj
function getRootPath(){
//获取当前网址,如: http://localhost:8083/uimcardprj/share/meun.jsp
var curWwwPath=window.document.locati
- oracle 的性能优化
cuishikuan
oracleSQL Server
在网上搜索了一些Oracle性能优化的文章,为了更加深层次的巩固[边写边记],也为了可以随时查看,所以发表这篇文章。
1.ORACLE采用自下而上的顺序解析WHERE子句,根据这个原理,表之间的连接必须写在其他WHERE条件之前,那些可以过滤掉最大数量记录的条件必须写在WHERE子句的末尾。(这点本人曾经做过实例验证过,的确如此哦!
- Shell变量和数组使用详解
daizj
linuxshell变量数组
Shell 变量
定义变量时,变量名不加美元符号($,PHP语言中变量需要),如:
your_name="w3cschool.cc"
注意,变量名和等号之间不能有空格,这可能和你熟悉的所有编程语言都不一样。同时,变量名的命名须遵循如下规则:
首个字符必须为字母(a-z,A-Z)。
中间不能有空格,可以使用下划线(_)。
不能使用标点符号。
不能使用ba
- 编程中的一些概念,KISS、DRY、MVC、OOP、REST
dcj3sjt126com
REST
KISS、DRY、MVC、OOP、REST (1)KISS是指Keep It Simple,Stupid(摘自wikipedia),指设计时要坚持简约原则,避免不必要的复杂化。 (2)DRY是指Don't Repeat Yourself(摘自wikipedia),特指在程序设计以及计算中避免重复代码,因为这样会降低灵活性、简洁性,并且可能导致代码之间的矛盾。 (3)OOP 即Object-Orie
- [Android]设置Activity为全屏显示的两种方法
dcj3sjt126com
Activity
1. 方法1:AndroidManifest.xml 里,Activity的 android:theme 指定为" @android:style/Theme.NoTitleBar.Fullscreen" 示例: <application
- solrcloud 部署方式比较
eksliang
solrCloud
solrcloud 的部署其实有两种方式可选,那么我们在实践开发中应该怎样选择呢? 第一种:当启动solr服务器时,内嵌的启动一个Zookeeper服务器,然后将这些内嵌的Zookeeper服务器组成一个集群。 第二种:将Zookeeper服务器独立的配置一个集群,然后将solr交给Zookeeper进行管理
谈谈第一种:每启动一个solr服务器就内嵌的启动一个Zoo
- Java synchronized关键字详解
gqdy365
synchronized
转载自:http://www.cnblogs.com/mengdd/archive/2013/02/16/2913806.html
多线程的同步机制对资源进行加锁,使得在同一个时间,只有一个线程可以进行操作,同步用以解决多个线程同时访问时可能出现的问题。
同步机制可以使用synchronized关键字实现。
当synchronized关键字修饰一个方法的时候,该方法叫做同步方法。
当s
- js实现登录时记住用户名
hw1287789687
记住我记住密码cookie记住用户名记住账号
在页面中如何获取cookie值呢?
如果是JSP的话,可以通过servlet的对象request 获取cookie,可以
参考:http://hw1287789687.iteye.com/blog/2050040
如果要求登录页面是html呢?html页面中如何获取cookie呢?
直接上代码了
页面:loginInput.html
代码:
<!DOCTYPE html PUB
- 开发者必备的 Chrome 扩展
justjavac
chrome
Firebug:不用多介绍了吧https://chrome.google.com/webstore/detail/bmagokdooijbeehmkpknfglimnifench
ChromeSnifferPlus:Chrome 探测器,可以探测正在使用的开源软件或者 js 类库https://chrome.google.com/webstore/detail/chrome-sniffer-pl
- 算法机试题
李亚飞
java算法机试题
在面试机试时,遇到一个算法题,当时没能写出来,最后是同学帮忙解决的。
这道题大致意思是:输入一个数,比如4,。这时会输出:
&n
- 正确配置Linux系统ulimit值
字符串
ulimit
在Linux下面部 署应用的时候,有时候会遇上Socket/File: Can’t open so many files的问题;这个值也会影响服务器的最大并发数,其实Linux是有文件句柄限制的,而且Linux默认不是很高,一般都是1024,生产服务器用 其实很容易就达到这个数量。下面说的是,如何通过正解配置来改正这个系统默认值。因为这个问题是我配置Nginx+php5时遇到了,所以我将这篇归纳进
- hibernate调用返回游标的存储过程
Supanccy2013
javaDAOoracleHibernatejdbc
注:原创作品,转载请注明出处。
上篇博文介绍的是hibernate调用返回单值的存储过程,本片博文说的是hibernate调用返回游标的存储过程。
此此扁博文的存储过程的功能相当于是jdbc调用select 的作用。
1,创建oracle中的包,并在该包中创建的游标类型。
---创建oracle的程
- Spring 4.2新特性-更简单的Application Event
wiselyman
application
1.1 Application Event
Spring 4.1的写法请参考10点睛Spring4.1-Application Event
请对比10点睛Spring4.1-Application Event
使用一个@EventListener取代了实现ApplicationListener接口,使耦合度降低;
1.2 示例
包依赖
<p