- AI模型训练中过拟合和欠拟合的区别是什么?
workflower
人工智能算法人工智能数据分析
在AI模型训练中,过拟合和欠拟合是两种常见的模型性能问题,核心区别在于模型对数据的学习程度和泛化能力:欠拟合(Underfitting)-定义:模型未能充分学习到数据中的规律,对训练数据的拟合程度较差,在训练集和测试集上的表现都不好(如准确率低、损失值高)。-原因:-模型结构过于简单(如用线性模型解决非线性问题);-训练数据量不足或特征信息不充分;-训练时间太短,模型尚未学到有效模式。-表现:训练
- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 《UNIX网络编程卷1:套接字联网API》第8章:基本UDP套接字编程深度解析
《UNIX网络编程卷1:套接字联网API》第8章:基本UDP套接字编程深度解析(8000字图文实战)一、UDP协议核心特性与编程模型1.1UDP协议设计哲学UDP(UserDatagramProtocol)是面向无连接的传输层协议(图1),其核心特征包括:无连接通信:无需三次握手,直接发送数据报尽最大努力交付:不保证可靠性、不维护连接状态报文边界保留:接收方读取的数据与发送方写入完全一致低开销高效
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- Python 程序设计讲义(26):字符串的用法——字符的编码
睿思达DBA_WGX
Python讲义python开发语言
Python程序设计讲义(26):字符串的用法——字符的编码目录Python程序设计讲义(26):字符串的用法——字符的编码一、字符的编码二、`ASCII`编码三、`Unicode`编码四、使用`ord()`函数查询一个字符对应的`Unicode`编码五、使用`chr()`函数查询一个`Unicode`编码对应的字符六、`Python`字符串的特征一、字符的编码计算机默认只能处理二进制数,而不能处
- SVG 在线编辑器
lly202406
开发语言
SVG在线编辑器引言随着互联网技术的发展,矢量图形在网页设计和数据可视化中扮演着越来越重要的角色。SVG(可缩放矢量图形)因其文件小、无限缩放不模糊的特性,成为了网页设计中常用的图形格式。SVG在线编辑器的出现,为设计师和开发者提供了极大的便利,使得图形的创建和修改变得更加高效。本文将详细介绍SVG在线编辑器的功能、应用场景以及发展趋势。SVG在线编辑器概述SVG在线编辑器是一种基于网页的图形编辑
- 数据可视化:数据世界的直观呈现
卢政权1
信息可视化数据分析数据挖掘
在当今数字化浪潮中,数据呈爆炸式增长。数据可视化作为一种强大的技术手段,能够将复杂的数据转化为直观的图形、图表等形式,让数据背后的信息一目了然。无论是在商业决策、科学研究还是日常数据分析中,数据可视化都发挥着极为重要的作用。它帮助我们快速理解数据的分布、趋势、关联等特征,从而为进一步的分析和行动提供有力支持。接下来,我们将深入探讨数据可视化的奥秘,并通过代码示例展示其实际应用。一、Python数据
- 基于随机森林的白酒风味智能分类系统:从数据到洞察的完整实践
笙囧同学
python
作者:笙囧同学|中科院计算机大模型方向硕士|全栈开发爱好者座右铭:偷懒是人生进步的阶梯联系方式:
[email protected]各大平台账号/公众号:笙囧同学前言大家好,我是笙囧同学!今天给大家分享一个超级有趣且技术含量爆表的项目——白酒风味智能分类系统。作为一个既爱技术又爱美酒的程序员,我花了大量时间研究如何用机器学习的方法来"品酒",让AI帮我们识别白酒的风味特征。这个项目融合了机器学习、数
- Serverless架构下Spring Function的创新实践
tmjpz04412
serverless架构spring
引言:Serverless与Spring生态的交汇背景介绍:云计算与Serverless架构的兴起Spring生态的演进与云原生适配性核心问题:传统Spring应用如何融入Serverless范式Serverless架构的核心特征与挑战事件驱动、弹性伸缩与按需计费冷启动问题与性能优化需求Spring应用在Serverless环境中的典型瓶颈(如依赖注入、上下文初始化)SpringFunction的
- AI心理学四层架构揭秘:语言模型为何“说谎“?
TGITCIC
AI-大模型的落地之道语言模型人工智能自然语言处理大模型国产大模型大模型落地
第一章神经层:代码编织的"脑电图"1.1注意力权重的量子跃迁当Claude3.5Haiku处理"达拉斯所在州的首府"这类问题时,其注意力权重图谱呈现出量子跃迁特征。研究团队通过归因图技术捕捉到:在输入"达拉斯"的瞬间,模型内部Texas节点的激活强度达到87.6%,首府概念节点同步飙升至79.3%。这种非线性激活模式与人类大脑的默认模式网络惊人相似。模型层级激活时序决策路径可解释性神经层300ms
- 4D卓越团队-习书C3
林晔0302
第三章4D系统-----神奇坐标的诞生一诞生背景:1物理学背景简化的二乘二矩阵,坐标系;2荣格1905年发表的人的性格发展理论;词汇参考MBTI指标坐标轴X:作出决策是用情感还是逻辑坐标轴Y:获取信息是靠直觉还是感觉。五感:视觉听觉嗅觉味觉触觉占70%二4D系统分析领导力领导者特征四维度:情感与直觉----绿色培养型情感与感觉---黄色包容型逻辑与直觉---蓝色展望型逻辑与感觉--橙色指导型三4D
- 【春招笔试真题】饿了么2025.03.07-算法岗真题
春秋招笔试突围
最新互联网春秋招试题合集算法代理模式
第一题:数据特征最大化1️⃣:找出数组中的最大元素,返回其平方难度:简单这是一道技巧性题目,乍看需要枚举所有子数组计算异或和和最大公约数。但通过分析可以发现,对任意单元素子数组,其异或值和最大公约数都是元素本身,因此乘积是元素的平方。可以证明,最大元素的平方就是整个问题的最优解。时间复杂度O(n)。第二题:同质接龙字符串1️⃣:记忆化搜索+动态规划2️⃣:使用状态编码降低存储复杂度难度:中等这道题
- 高铁站违规撑伞识别误检率↓79%:陌讯多模态融合算法实战解析
2501_92722744
算法人工智能目标检测计算机视觉目标跟踪
原创声明本文为原创技术解析,核心技术参数与架构参考自《陌讯技术白皮书》,禁止未经授权的转载与改编。一、行业痛点:密集场景下的违规撑伞识别难题在高铁站、地铁站等交通枢纽,违规撑伞(如非雨天在站台、通道内持伞)可能引发客流拥堵、设备刮擦等安全隐患。然而,传统视觉识别方案面临三大核心挑战:环境干扰大:进出站口光线突变(正午强光/夜间弱光)导致伞面特征提取不稳定,某枢纽站点实测数据显示,阴雨天违规撑伞识别
- native.js设置可缩放的webview并隐藏缩放控件
Nanayai
需求明确:webview页面可以手指缩放,并且不要那个原生控件;实现思路:1.使用h5+封装好的方法:设置scalable属性,并在html中设置meta标签:user-scalable=yes或不设置,minimum-scale和maximum-scale需要注意不要都设为1:mui.openWindow({url:"someThing",id:"someThing",styles:{scala
- yolo 目标检测600类目标
大霸王龙
行业+领域+业务场景=定制YOLO目标检测人工智能
1.模型架构调整类别适配:将YOLO输出层的类别节点数调整为600(如YOLOv5的detect.yaml中修改nc=600),并更新类别名称映射表(classes.txt)。骨干网络优化:若使用YOLOv5/v8,可升级骨干网络(如C3模块深度)或替换为更高性能的主干(如EfficientNet、ResNet-101),以增强复杂场景的特征提取能力。多尺度检测头:保留或扩展YOLO的多尺度输出(
- MYSQL:MySQL 事务隔离级别详解
奋斗的狍子007
MySQL核心知识点mysql数据库javaspring架构springbootide
一、MySQL事务是什么? MySQL事务是一组在数据库中执行的操作,这些操作要么全部成功执行,要么全部不执行,以确保数据库的完整性和一致性。事务的ACID 事务具有四个特征:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持续性(Durability)。这四个特性简称为ACID特性。原子性:事务是数据库的逻辑工作单位,事务中包含的各操作要么都做,
- 基于AlexNet架构的卷积神经网络模型用于对胸部X光图像进行二分类(例如,诊断肺炎)
1.肺炎正常的胸部X线片描绘了清晰的肺部,图像中没有任何异常混浊的区域。正常的胸部X线片1.1细菌性肺炎临床表现细菌性肺炎通常由细菌引起,如肺炎链球菌、流感嗜血杆菌、肺炎克雷伯菌等。患者可能出现高热、寒战、咳嗽、咳痰(痰液可能呈脓性)、胸痛、呼吸困难等症状。影像学特征局灶性肺叶实变细菌性肺炎在影像学上常表现为肺叶或肺段的局灶性实变,即某一区域的肺组织因炎症而失去气体交换功能,呈现为高密度影。胸腔积
- 工作能力强的人有哪些共同特征?
郭强GQ
知乎上这个问题有1231个回答,关注者127,576,被浏览14,248,085。我摘录了其中一些回答,并与“卓有成效de管理实践”的十个方面对照。请看下文。回答1:(小猫倩倩-产品经理)许多人在职场中,想成为工作强人,却发现努力了没有效果,依旧在平庸中徘徊。这可能是没有做到用“创意工作”替代“日常工作”。表1列出了创意工作的特点对应的卓有成效de管理实践要做的事情,很明显,做好创意性的工作,要践
- halcon知识:常见三种模板匹配方法总结
无水先生
Halcon高级应用Halcon中级实践计算机视觉图像处理
目录一、形状匹配模板(Shape_Based)1.1形状匹配常见的有四种情况1.2四种匹配的特点1.3一般形状匹配模板shape_model1.4线性变形匹配模板planar_deformable_model1.5局部变形模板1.6比例缩放末班匹配二、灰度匹配模板(Gray-Value-Based)2.1创建模板方法如下2.2匹配搜索操作2.3模板调整操作三、组合模板匹配(Component-Ba
- 【Python高阶开发】1. Pandas工业级时序数据处理实战:从振动传感器数据到轴承故障预警系统
AI_DL_CODE
pythonpandas时序数据处理振动传感器工业数据清洗特征工程
摘要:在工业设备健康监测中,振动传感器数据是评估设备状态的核心依据,但高频噪声干扰、数据传输缺失、多设备时间戳错位等问题严重影响分析准确性。本文基于PythonPandas构建工业级时序数据处理流水线,提出"时间校正-缺失填充-噪声过滤-特征提取"四步清洗法,针对工业场景设计专用策略:短时缺失采用线性插值、长时缺失标记异常,振动数据结合移动平均与Z-score检测保留真实特征。通过时域(峰值、峭度
- 点滴成就梦想
卿城卿国
今天是非常充实的一天,我觉得时间安排的也比较合理,忙碌而收获颇多。夜深人静,我也将自己的忙碌告一段落,开始对自己的一天进行复盘早上八点前,为女儿准备好了简单的早餐,帮助女儿装好保温杯,在女儿喃喃的英语背诵声中,目送她走出家门去上学;静坐十分钟后,在我的家长《微课堂》中开课,今天是第二讲,“家长与不同阶段的孩子如何沟通?”,经过了二天的精心准备,今天主要以家长正确观念的梳理,小学一年级孩子的心理特征
- 老烟袋,黄花梨杆,天然玛瑙烟嘴,和田玉挂件,包洚浓厚品像一流,磨损自然,时代特征明显,保存完整实物如图。
书画作品交流
老烟袋,黄花梨杆,天然玛瑙烟嘴,和田玉挂件,包洚浓厚品像一流,磨损自然,时代特征明显,保存完整实物如图。图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App
- 中级经济基础各类曲线汇总(5)
Coco万在简述
--写给报考中级经济师的小伙伴们2022年8月21日周日深圳晴1048/1000【主题】经济学基础【字数】1291今天的简文继续梳理中级经济师公共科目中的《经济基础知识》一书中的各类曲线之5,即完全竞争市场上行业的供求曲线和个别企业的需求曲线。首先,从市场结构理论来理解什么是完全竞争市场。完全竞争市场具备如下特征:1、市场上有很多生产者和消费者,或者说买家卖家,一般他们的规模很小,自己决定不了产品
- 为什么背后说他人坏话的人惹人讨厌,来看看心理学如何解释解释
王风悔
在背后说他人坏话的人往往令人极度反感,社会的道德似乎对这种人会有天生的排斥,大家见到这种人就会产生天然的厌恶。这是为什么呢?在沟通中,人们会把说话者用在别人身上的形容词跟说话者本身联系在一起。也就是说,当你说一个人很真诚,很善良,人们会下意识把这些特质联系到你身上。同理,如果你总是背地里说别人的坏话,人们也会把这些负面评价联系到你的身上。心理学上把这种现象,叫做“无意识特征转移”。古人有云:“莫言
- 42、智能制造与数字化转型:创新之路与实践成果
game4
智能制造数字化转型数据处理
智能制造与数字化转型:创新之路与实践成果1.数据处理决策与架构挑战在数据处理方面,需要考虑多个关键决策维度,主要包括摄入、处理和持久化。1.1数据摄入方式原始数据摄入:直接获取最基础、未经过处理的数据,能保留数据的完整性和原始特征,但可能数据量较大,处理成本较高。聚合数据摄入:对原始数据进行一定程度的汇总和整合,减少数据量,便于后续分析,但可能会丢失一些细节信息。1.2数据处理模式集中式处理:将数
- Python_day54Inception网络及其思考
且慢.589
Python_60python开发语言
一、inception网络介绍今天我们介绍inception,也就是GoogleNet传统计算机视觉的发展史从上面的链接,可以看到其实inceptionnet是在resnet之前的,那为什么我今天才说呢?因为他要引出我们后面的特征融合和特征并行处理这些思想。Inception网络,也被称为GoogLeNet,是Google团队在2014年提出的经典卷积神经网络架构。它的核心设计理念是“并行的多尺度
- 《你就是孩子最好的玩具》读书笔记
许个诺
一、父母管教孩子的常见误区1、控制型父母特征:”都给我停下来!不许乱跑!再捣乱就别想看电视!-命令和威胁是控制型的典型表现-这样不会让孩子有责任感,孩子长大后会更容易放纵自己。”2、放任型父母”不理他,我没办法,小孩子闹一闹没关系的。“”孩子学不会应有的社会规则-孩子长大会缺乏约束和规矩,没有群体归属感,更容易涉及毒品、早孕和帮派、网络成瘾。因为他们需要极强的团队依赖。”3、轻视、低估和否定孩子的
- 移动端布局
小唱同学
viewport详解viewport:视口,指的是浏览器中放网页内容的区域移动端的viewport不会自动随着设备的变化而变化,被设定为一个固定值980或者1024,为了能够在移动端正常查看pc端页面.做移动端布局时,需要把viewport设置为随着设备的变化而变化参数说明:width:设置视口的宽度device-width设备宽度initial-scale:页面的初始缩放比例1.0原始大小max
- AI 绘画 + 编程:10 分钟生成个性化艺术作品
大力出奇迹985
人工智能
本文围绕Python+OpenCV实现自动人脸识别门禁系统展开,先概述系统的基本构成与作用,再从系统核心技术、开发实现步骤、功能扩展方向、实际应用场景及优化改进策略五个方面详细阐述,最后总结系统的价值与发展前景,为相关开发和应用提供全面参考。一、系统核心技术解析人脸识别技术是门禁系统的核心,其关键在于对人脸特征的精准提取与匹配。OpenCV作为开源计算机视觉库,提供了丰富的人脸检测算法,如Haar
- Java过滤器与拦截器深度解析
目录概述过滤器Filter拦截器Interceptor执行流程图解核心区别对比代码实现示例使用场景最佳实践概述在JavaWeb开发中,过滤器(Filter)和拦截器(Interceptor)是两种重要的请求处理机制。它们都能够对HTTP请求进行预处理和后处理,但在实现方式、执行时机和应用场景上有着显著的区别。关键特征对比表特征过滤器(Filter)拦截器(Interceptor)️基于Servle
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比