- 基于深度学习的图像分类:使用ShuffleNet实现高效分类
Blossom.118
机器学习与人工智能深度学习分类人工智能机器学习数据挖掘python目标检测
前言图像分类是计算机视觉领域中的一个基础任务,其目标是将输入的图像分配到预定义的类别中。近年来,深度学习技术,尤其是卷积神经网络(CNN),在图像分类任务中取得了显著的进展。ShuffleNet是一种轻量级的深度学习架构,专为移动和嵌入式设备设计,能够在保持较高分类精度的同时,显著减少计算量和模型大小。本文将详细介绍如何使用ShuffleNet实现高效的图像分类,从理论基础到代码实现,带你一步步掌
- 提示工程中的上下文窗口优化:架构师提升模型记忆的关键
AI实战架构笔记
ai
提示工程中的上下文窗口优化:架构师提升模型记忆的关键元数据标题:提示工程中的上下文窗口优化:架构师提升模型记忆的关键策略与实践指南关键词:上下文窗口管理、提示工程架构、大型语言模型优化、注意力机制效率、长序列处理、记忆增强技术、动态上下文规划摘要:在大型语言模型(LLM)应用中,上下文窗口是连接模型能力与实际需求的关键桥梁。本文从架构师视角,系统探讨上下文窗口优化的理论基础、设计原则与实施策略。通
- 机器学习算法(六)---逻辑回归
向云端UP
机器学习模型机器学习算法逻辑回归
目录一、逻辑回归1.1模型介绍1.2工作原理1.2.1对数几率模型1.2.2逻辑回归与Sigmoid函数1.3.3熵、相对熵与交叉熵1.3损失函数和优化算法1.3.1损失函数的理论基础1.3.2优化算法1.3.2.1梯度下降算法局限1.3.2.2随机梯度下降与小批量梯度下降1.4算法流程1.5逻辑回归优缺点1.6案例1.7classification_report()参数二、逻辑回归与线性回归的区
- 跨境电商 ai架构设计
Java程序员 拥抱ai
ai人工智能
一、核心理论基础AI生成知识库的本质是**“数据驱动的知识结构化与智能化生产”**,核心依赖三大理论支撑:知识工程理论将跨境电商业务中分散的“非结构化信息”(如产品参数、用户评价、物流规则、合规条款)转化为“结构化知识”(如实体关系、规则库、决策树),通过AI实现知识的自动提取、关联与更新。例:家具用品的“材质-环保标准-目标市场合规要求”(如欧盟E1级板材认证)可形成关联知识链。自然语言处理(N
- 基于深度学习的图像分类:使用Inception-v3实现高效分类
Blossom.118
机器学习与人工智能深度学习分类人工智能机器学习数据挖掘计算机视觉python
前言图像分类是计算机视觉领域中的一个基础任务,其目标是将输入的图像分配到预定义的类别中。近年来,深度学习技术,尤其是卷积神经网络(CNN),在图像分类任务中取得了显著的进展。Inception-v3是一种高效的深度学习架构,通过引入多尺度特征提取和模块化设计,显著提高了模型的性能和效率。本文将详细介绍如何使用Inception-v3实现高效的图像分类,从理论基础到代码实现,带你一步步掌握基于Inc
- 代码随想录算法训练营day6(python版)[day5休息]|第三章 哈希表part01|242.有效的字母异位词 ● 349. 两个数组的交集 ● 202. 快乐数● 1. 两数之和
目录哈希表理论基础一些点242.有效的字母异位词题目思路349.两个数组的交集题目思路1使用字典和集合思路2使用集合202.快乐数题目思路1.两数之和题目思路哈希表理论基础建议:大家要了解哈希表的内部实现原理,哈希函数,哈希碰撞,以及常见哈希表的区别,数组,set和map。什么时候想到用哈希法,当我们遇到了要快速判断一个元素是否出现集合里的时候,就要考虑哈希法。这句话很重要,大家在做哈希表题目都要
- 2022-01-04 马原
一般路过的阿伟
回顾导论马克思主义及马克思主义原理的基本内涵马克思主义是由马克思和恩格斯创立并由后继者不断发展的科学理论体系,是关于自然、社会和人类思维发展的一般规律的学说,是关于社会主义必将替代资本主义,最终实现共产主义的学说,是关于无产阶级解放、全人类解放,每个人的全面自由发展的学说,是指引人们创造美好生活的行动指南。基本组成:马克思主义哲学(理论基础)马克思主义政治经济学(主要内容及应用)科学社会主义(核心
- 《学术论文写作》_周淑敏—— L3
西暇
学术论文材料收集————————————P4学术论文材料的收集和选择收集、积累信息和材料是写好学术论文的基础。前人结果或知识的基础上加以借鉴、吸收、发展,从而有所发明创造。事实+理论基础。“事实”指来自于社会生活与社会实践的具体事实和结果;理论根据”指来自于前人总结出来的正确的道理、概念、原则。搜集和积累材料。撰写论文摆事实,讲道理。提炼对材料的鉴别。写学术论文的目的,总是要表达某种思想、某种观点
- 一文吃透 Java 并发三大核心问题:可见性、原子性、有序性
目录Java并发理论基础一、多线程的便利二、Java多线程并发不安全并发不安全的核心问题:共享资源+缺乏同步如何避免并发不安全三、Java多线程并发出现问题的根源1.可见性问题——线程之间看不到彼此的最新数据现象:举例:根源分析:2.原子性问题——操作是不可分割的现象:举例:根源分析:3.有序性问题——指令可能被重排现象:举例:什么叫“先把引用赋值”?根源分析:四、Java解决并发问题的方式syn
- WebRTC指纹——深度分析(中篇)
守城小轩
指纹浏览器webrtc浏览器开发指纹浏览器chromedevtoolschrome
1.引言在上篇中,我们建立了WebRTC审查规避系统分析的理论基础,探讨了技术背景和威胁模型。中篇将深入分析WebRTC协议栈中的具体识别特征,通过对多个主流WebRTC应用的实际协议分析,揭示不同实现之间存在的显著差异。这些协议层面的特征差异构成了审查系统进行指纹识别的重要依据。通过系统性地分析STUN/TURN协议特征、DTLS层深度特征、媒体通道与数据通道的使用模式差异,以及网络行为模式特征
- RAG实战指南 Day 24:上下文构建与提示工程
【RAG实战指南Day24】上下文构建与提示工程文章内容开篇欢迎来到"RAG实战指南"系列的第24天!今天我们将深入探讨RAG系统中至关重要的上下文构建与提示工程技术。在检索增强生成系统中,如何有效地组织检索到的文档片段,并将其转化为适合大语言模型(LLM)处理的提示,直接决定了最终生成结果的质量。本文将系统讲解上下文构建的最佳实践和高级提示工程技术,帮助您构建更精准、更可靠的RAG应用。理论基础
- 微服务架构中数据一致性保证机制深度解析
大曰编程
java面试架构微服务云原生
在微服务架构中,数据一致性是分布式系统设计的核心挑战。由于服务拆分后数据自治(每个服务独立数据库),跨服务操作的一致性保障需突破传统单体事务的局限。本文从一致性模型、核心解决方案、技术实现及面试高频问题四个维度,系统解析微服务数据一致性的保障机制。一、一致性模型与理论基础1.1一致性模型对比模型核心特征适用场景强一致性所有节点同时看到相同的数据状态,符合ACID特性金融交易(如转账、支付)最终一致
- 概率论基础:公理、定律与贝叶斯定理
偏偏无理取闹
概率论公理贝叶斯定理条件概率随机变量
背景简介概率论是数学的一个分支,主要研究随机事件和随机变量的概率。它是现代统计学、经济学、保险学、金融学、密码学等多个领域不可或缺的理论基础。本文将通过介绍概率论的三大公理,推导出重要的概率法则,并探讨贝叶斯定理及其应用。概率的三大公理概率论的基础在于一套明确的公理系统,这些公理为计算和理解概率提供了数学上的框架。公理1:概率值的范围每个事件A的概率值介于0和1之间,即0≤Pr[A]≤1。这意味着
- 函数调用栈回溯机制详解
硬核科技
嵌入式单片机开发实战嵌入式嵌入式硬件软件单片机
函数调用回溯Backtrace是现代软件系统调试中的关键技术之一,尤其在嵌入式开发和Linux平台调试中更显重要。它提供了程序在运行或崩溃时的函数调用路径,有助于快速定位错误源。一、函数调用栈与Backtrace的理论基础1.1什么是函数调用栈?函数调用栈(CallStack)是一种由编译器和运行时系统共同维护的后进先出(LIFO)数据结构。每次函数调用时,当前函数的返回地址、局部变量、保存的寄存
- 学习Java对象的使用
颵麏
一、学习目的对象是整个面向对象程序设计的理论基础,由于面向对象程序中使用类来创建对象,所以可以将对象理解为一种新型的变量,它保存着一些比较有用的数据,但可以要求它对自身进行操作。对象之间靠互相传递消息而相互作用。消息传递的结果是启动了方法,完成一-些行为或者修改接收消息的对象的属性。学会如何使用对象对面向对象编程思想的培养有很大帮助二、学习内容1,对象创建后就可以访问对象成员访问方法是对象名.对象
- 学习研读党章,汲取精神力量
498f3f8612e0
党章是党的最高行为准则,集中表达了党的理论基础和政治主张,是全每一位党员都必须严格遵守的基本准则,是党员不断加强自身党性修养的根本标准,学习认识党章的重要性,深刻学习贯彻党的章程,把学习贯彻党章作为学习贯彻党的二十大精神的重要内容,是增强党员干部队伍凝聚力、战斗力的重要法宝。党员是党组织的一份子,是党的事业发展的核心力量,深刻学习贯彻党章、认真领悟党章的要求和内涵,是对每一位党员的基本要求。一、积
- Pad Token技术原理与实现指南
Takoony
AI
目录概述理论基础:第一性原理分析技术实现机制工程最佳实践性能优化策略常见问题与解决方案技术发展趋势附录1.概述1.1文档目的本文档旨在深入阐述深度学习中PadToken的技术原理、实现机制及工程应用,为算法工程师提供全面的理论指导和实践参考。1.2适用范围自然语言处理模型开发序列数据批处理优化深度学习系统架构设计高性能计算资源管理1.3核心问题研究问题:为什么深度学习模型需要将变长序列统一到固定长
- 深度学习分布式训练:并行策略与通信机制的系统性分析
Takoony
深度学习分布式人工智能
1.引言随着深度学习模型规模的指数级增长,单一计算设备已无法满足训练需求。以GPT-3为例,其1750亿参数在FP16精度下需要约350GB存储空间(每个参数2字节),远超当前主流GPU的显存容量(如NVIDIAA100的80GB)。根据OpenAI的技术报告[1],即使使用最先进的硬件,单卡训练GPT-3需要355年。这一计算瓶颈催生了分布式训练技术的快速发展。本文将从理论基础出发,系统性地分析
- 2019-03-24
sunny_ea1f
期待周末的好日子,工作不需我操心,心是自由的,身体也是,能随便想想东西。✌✌✌喝一杯茶也可以,写封信也可以,读本书也可以,不做什么也可以。真是美好的一天,生活惬意。早起打卡《学习强国》,为一天的成长增强理论基础。上午一家外出踏青,首山漫山遍野的油菜花盛开了,一朵朵,一簇簇,一片片,在春风里昂首怒放,盈盈招手,展示其迷人的风姿,煞是喜人。不禁想起:姿容清丽厌奢华,淡淡平平不自夸。羞去院庭争宿地,乐来
- 基于深度学习的目标检测:从基础到实践
Blossom.118
机器学习与人工智能深度学习目标检测人工智能音视频语音识别计算机视觉机器学习
前言目标检测(ObjectDetection)是计算机视觉领域中的一个核心任务,其目标是在图像中定位和识别多个对象的类别和位置。近年来,深度学习技术,尤其是卷积神经网络(CNN),在目标检测任务中取得了显著进展。本文将详细介绍如何使用深度学习技术构建目标检测模型,从理论基础到代码实现,带你一步步掌握目标检测的完整流程。一、目标检测的基本概念(一)目标检测的定义目标检测是指在图像中识别和定位多个对象
- 公路桥梁施工质量管理与控制方法分析
阿卞是宝藏啊
本文还有配套的精品资源,点击获取简介:本文深入探讨了公路桥梁施工中如何实施有效的质量管理与控制,强调了质量管理的重要性,详述了质量控制的理论基础,并概述了施工前后质量策划、材料与设备质量控制、施工过程监控、质量信息管理、问题处理与改进、竣工验收及后期维护的方法。强调了全面质量管理理论与现代信息技术的应用,旨在确保工程安全、可靠与耐久。1.质量管理的重要性1.1市场竞争中的质量要素在当今竞争日益激烈
- 基于探路者算法优化的核极限学习机(KELM)分类算法
智能算法研学社(Jack旭)
智能优化算法应用机器学习#核极限学习机(KELM)算法分类数据挖掘
基于探路者算法优化的核极限学习机(KELM)分类算法文章目录基于探路者算法优化的核极限学习机(KELM)分类算法1.KELM理论基础2.分类问题3.基于探路者算法优化的KELM4.测试结果5.Matlab代码摘要:本文利用探路者算法对核极限学习机(KELM)进行优化,并用于分类1.KELM理论基础核极限学习机(KernelBasedExtremeLearningMachine,KELM)是基于极限
- 波的时频分析方法——短时傅里叶变换(STFT)变换详解
DuHz
傅立叶分析数学建模信号处理信息与通信算法人工智能概率论
短时傅里叶变换:理论基础、数学原理与信号分析应用1.引言时频分析是现代信号处理的核心技术之一,旨在同时描述信号在时间和频率域的局部特性。传统的傅里叶变换虽然能够完美描述信号的频域特征,但其全局性质使其无法处理非平稳信号的时变特性。短时傅里叶变换通过引入窗函数的概念,在保持傅里叶变换优良性质的同时,实现了时频域的局部化分析,为非平稳信号处理提供了重要的理论工具。STFT自1946年由Gabor提出以
- 支持向量回归(Support Vector Regression, SVR)详解
DuHz
回归数据挖掘人工智能信号处理算法数学建模机器学习
支持向量回归(SupportVectorRegression,SVR)详解支持向量回归(SupportVectorRegression,简称SVR)是一种基于支持向量机(SVM)的回归分析方法,广泛应用于预测和模式识别领域。SVR通过在高维空间中寻找一个最优超平面,以最大化数据点与超平面的间隔,从而实现对连续型变量的预测。本文将深入探讨SVR的理论基础、数学原理、模型构建、参数选择、训练与优化、应
- 雷米兹交换算法(Remez Exchange Algorithm)的数学理论
雷米兹交换算法(RemezExchangeAlgorithm)的数学理论引言雷米兹交换算法(RemezExchangeAlgorithm)是数值逼近理论中的核心算法,其理论基础建立在19世纪切比雪夫(Chebyshev)的开创性工作之上。第一章切比雪夫逼近的理论基础1.1切比雪夫多项式的定义与性质第一类切比雪夫多项式Tn(x)T_n(x)Tn(x)在区间[−1,1][-1,1][−1,1]上通过如
- 软件测试理论基础、质量保证常见面试题
程序员阿沐
全面掌握软件测试理论基础、文档编写,测试流程1.测试分为哪几个阶段?⒉谈谈你之前测试的项目流程,在每个阶段的输出有哪些?3.谈谈敏捷模式的认识?4.linux常见查看日志命令有哪些?5.线上质量BUG频频爆发怎么办?6.如何分析一个bug是前端还是后端的问题?这些问题你一定要能够很全面的表述出来。比如说我现在是面试官,我第一个肯定不会去问你哪些代码的问题,也不会问你自动化、测试开发的问题。第一个查
- 自学软件测试需要学什么?
AIZHINAN
软件测试软件测试面试自学软件测试软件测试培训转行软件测试
软件测试是一个系统化的领域,需要掌握测试理论、工具、编程、环境配置、业务流程等多方面知识。以下是系统化的学习路径,涵盖从入门到进阶的核心内容:软件测试视频教程,从入门到精通(完整版)零基础小白也可学!一、测试理论基础1.测试基础概念软件测试的定义、目的(质量保障、缺陷预防)。测试流程:需求分析→测试计划→用例设计→执行→缺陷管理→报告。常见术语:黑盒/白盒测试、回归测试、冒烟测试、Alpha/Be
- 大模型在2型糖尿病性酮症预测及临床方案制定中的应用研究
LCG元
围术期危险因子预测模型研究人工智能python深度学习
目录一、引言1.1研究背景与意义1.2研究目的与创新点二、2型糖尿病性酮症相关理论基础2.12型糖尿病性酮症概述2.1.1定义与发病机制2.1.2临床表现与危害2.1.3诊断标准与鉴别诊断2.2大模型技术原理及在医疗领域的应用潜力2.2.1大模型的基本原理和特点2.2.2在医疗领域的应用现状和优势三、大模型在2型糖尿病性酮症术前风险预测的应用3.1数据收集与预处理3.1.1数据来源3.1.2数据清
- 【算法训练营Day11】二叉树part1
十八岁讨厌编程
算法训练营算法
文章目录理论基础二叉树的递归遍历前序遍历中序遍历后序遍历总结二叉树的层序遍历基础层序遍历二叉树的右视图理论基础二叉树在结构上的两个常用类型:满二叉树完全二叉树在功能应用上的比较常用的有:二叉搜索树:节点有权值、遵循”左小右大“平衡二叉搜索树(AVL树):在二叉树的基础上增添了一个特性,左右子树高度差不超过1二叉树的存储方式:顺序存储:使用数组,在内存中连续分布链式存储:使用指针,在内存中离散分布二
- 坚持不懈以学筑魂,不断筑牢政治忠诚
日落时分217
孔子曰:“学而时习之,不亦说乎”古人在面对学习时的态度也再次印证了学习的重要性,活到老,学到老的坚持是我们每个党员干部需要贯彻的学习思想,只有通过不断地学习,才能武装思想扎实理论基础,跟得上时代的变迁,适应世界格局的变化。自治区党委理论学习中心组会议暨省级领导读书班交流研讨会隆重举行。马兴瑞书记强调:“深入学习贯彻习近平新时代中国特色社会主义思想是新时代新征程下的党员干部的首要政治任务个终身必修课
- 开发者关心的那些事
圣子足道
ios游戏编程apple支付
我要在app里添加IAP,必须要注册自己的产品标识符(product identifiers)。产品标识符是什么?
产品标识符(Product Identifiers)是一串字符串,它用来识别你在应用内贩卖的每件商品。App Store用产品标识符来检索产品信息,标识符只能包含大小写字母(A-Z)、数字(0-9)、下划线(-)、以及圆点(.)。你可以任意排列这些元素,但我们建议你创建标识符时使用
- 负载均衡器技术Nginx和F5的优缺点对比
bijian1013
nginxF5
对于数据流量过大的网络中,往往单一设备无法承担,需要多台设备进行数据分流,而负载均衡器就是用来将数据分流到多台设备的一个转发器。
目前有许多不同的负载均衡技术用以满足不同的应用需求,如软/硬件负载均衡、本地/全局负载均衡、更高
- LeetCode[Math] - #9 Palindrome Number
Cwind
javaAlgorithm题解LeetCodeMath
原题链接:#9 Palindrome Number
要求:
判断一个整数是否是回文数,不要使用额外的存储空间
难度:简单
分析:
题目限制不允许使用额外的存储空间应指不允许使用O(n)的内存空间,O(1)的内存用于存储中间结果是可以接受的。于是考虑将该整型数反转,然后与原数字进行比较。
注:没有看到有关负数是否可以是回文数的明确结论,例如
- 画图板的基本实现
15700786134
画图板
要实现画图板的基本功能,除了在qq登陆界面中用到的组件和方法外,还需要添加鼠标监听器,和接口实现。
首先,需要显示一个JFrame界面:
public class DrameFrame extends JFrame { //显示
- linux的ps命令
被触发
linux
Linux中的ps命令是Process Status的缩写。ps命令用来列出系统中当前运行的那些进程。ps命令列出的是当前那些进程的快照,就是执行ps命令的那个时刻的那些进程,如果想要动态的显示进程信息,就可以使用top命令。
要对进程进行监测和控制,首先必须要了解当前进程的情况,也就是需要查看当前进程,而 ps 命令就是最基本同时也是非常强大的进程查看命令。使用该命令可以确定有哪些进程正在运行
- Android 音乐播放器 下一曲 连续跳几首歌
肆无忌惮_
android
最近在写安卓音乐播放器的时候遇到个问题。在MediaPlayer播放结束时会回调
player.setOnCompletionListener(new OnCompletionListener() {
@Override
public void onCompletion(MediaPlayer mp) {
mp.reset();
Log.i("H
- java导出txt文件的例子
知了ing
javaservlet
代码很简单就一个servlet,如下:
package com.eastcom.servlet;
import java.io.BufferedOutputStream;
import java.io.IOException;
import java.net.URLEncoder;
import java.sql.Connection;
import java.sql.Resu
- Scala stack试玩, 提高第三方依赖下载速度
矮蛋蛋
scalasbt
原文地址:
http://segmentfault.com/a/1190000002894524
sbt下载速度实在是惨不忍睹, 需要做些配置优化
下载typesafe离线包, 保存为ivy本地库
wget http://downloads.typesafe.com/typesafe-activator/1.3.4/typesafe-activator-1.3.4.zip
解压r
- phantomjs安装(linux,附带环境变量设置) ,以及casperjs安装。
alleni123
linuxspider
1. 首先从官网
http://phantomjs.org/下载phantomjs压缩包,解压缩到/root/phantomjs文件夹。
2. 安装依赖
sudo yum install fontconfig freetype libfreetype.so.6 libfontconfig.so.1 libstdc++.so.6
3. 配置环境变量
vi /etc/profil
- JAVA IO FileInputStream和FileOutputStream,字节流的打包输出
百合不是茶
java核心思想JAVA IO操作字节流
在程序设计语言中,数据的保存是基本,如果某程序语言不能保存数据那么该语言是不可能存在的,JAVA是当今最流行的面向对象设计语言之一,在保存数据中也有自己独特的一面,字节流和字符流
1,字节流是由字节构成的,字符流是由字符构成的 字节流和字符流都是继承的InputStream和OutPutStream ,java中两种最基本的就是字节流和字符流
类 FileInputStream
- Spring基础实例(依赖注入和控制反转)
bijian1013
spring
前提条件:在http://www.springsource.org/download网站上下载Spring框架,并将spring.jar、log4j-1.2.15.jar、commons-logging.jar加载至工程1.武器接口
package com.bijian.spring.base3;
public interface Weapon {
void kil
- HR看重的十大技能
bijian1013
提升能力HR成长
一个人掌握何种技能取决于他的兴趣、能力和聪明程度,也取决于他所能支配的资源以及制定的事业目标,拥有过硬技能的人有更多的工作机会。但是,由于经济发展前景不确定,掌握对你的事业有所帮助的技能显得尤为重要。以下是最受雇主欢迎的十种技能。 一、解决问题的能力 每天,我们都要在生活和工作中解决一些综合性的问题。那些能够发现问题、解决问题并迅速作出有效决
- 【Thrift一】Thrift编译安装
bit1129
thrift
什么是Thrift
The Apache Thrift software framework, for scalable cross-language services development, combines a software stack with a code generation engine to build services that work efficiently and s
- 【Avro三】Hadoop MapReduce读写Avro文件
bit1129
mapreduce
Avro是Doug Cutting(此人绝对是神一般的存在)牵头开发的。 开发之初就是围绕着完善Hadoop生态系统的数据处理而开展的(使用Avro作为Hadoop MapReduce需要处理数据序列化和反序列化的场景),因此Hadoop MapReduce集成Avro也就是自然而然的事情。
这个例子是一个简单的Hadoop MapReduce读取Avro格式的源文件进行计数统计,然后将计算结果
- nginx定制500,502,503,504页面
ronin47
nginx 错误显示
server {
listen 80;
error_page 500/500.html;
error_page 502/502.html;
error_page 503/503.html;
error_page 504/504.html;
location /test {return502;}}
配置很简单,和配
- java-1.二叉查找树转为双向链表
bylijinnan
二叉查找树
import java.util.ArrayList;
import java.util.List;
public class BSTreeToLinkedList {
/*
把二元查找树转变成排序的双向链表
题目:
输入一棵二元查找树,将该二元查找树转换成一个排序的双向链表。
要求不能创建任何新的结点,只调整指针的指向。
10
/ \
6 14
/ \
- Netty源码学习-HTTP-tunnel
bylijinnan
javanetty
Netty关于HTTP tunnel的说明:
http://docs.jboss.org/netty/3.2/api/org/jboss/netty/channel/socket/http/package-summary.html#package_description
这个说明有点太简略了
一个完整的例子在这里:
https://github.com/bylijinnan
- JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
coder_xpf
jqueryjsonmapval()
JSONUtil.serialize(map)和JSON.toJSONString(map)的区别
数据库查询出来的map有一个字段为空
通过System.out.println()输出 JSONUtil.serialize(map): {"one":"1","two":"nul
- Hibernate缓存总结
cuishikuan
开源sshjavawebhibernate缓存三大框架
一、为什么要用Hibernate缓存?
Hibernate是一个持久层框架,经常访问物理数据库。
为了降低应用程序对物理数据源访问的频次,从而提高应用程序的运行性能。
缓存内的数据是对物理数据源中的数据的复制,应用程序在运行时从缓存读写数据,在特定的时刻或事件会同步缓存和物理数据源的数据。
二、Hibernate缓存原理是怎样的?
Hibernate缓存包括两大类:Hib
- CentOs6
dalan_123
centos
首先su - 切换到root下面1、首先要先安装GCC GCC-C++ Openssl等以来模块:yum -y install make gcc gcc-c++ kernel-devel m4 ncurses-devel openssl-devel2、再安装ncurses模块yum -y install ncurses-develyum install ncurses-devel3、下载Erang
- 10款用 jquery 实现滚动条至页面底端自动加载数据效果
dcj3sjt126com
JavaScript
无限滚动自动翻页可以说是web2.0时代的一项堪称伟大的技术,它让我们在浏览页面的时候只需要把滚动条拉到网页底部就能自动显示下一页的结果,改变了一直以来只能通过点击下一页来翻页这种常规做法。
无限滚动自动翻页技术的鼻祖是微博的先驱:推特(twitter),后来必应图片搜索、谷歌图片搜索、google reader、箱包批发网等纷纷抄袭了这一项技术,于是靠滚动浏览器滚动条
- ImageButton去边框&Button或者ImageButton的背景透明
dcj3sjt126com
imagebutton
在ImageButton中载入图片后,很多人会觉得有图片周围的白边会影响到美观,其实解决这个问题有两种方法
一种方法是将ImageButton的背景改为所需要的图片。如:android:background="@drawable/XXX"
第二种方法就是将ImageButton背景改为透明,这个方法更常用
在XML里;
<ImageBut
- JSP之c:foreach
eksliang
jspforearch
原文出自:http://www.cnblogs.com/draem0507/archive/2012/09/24/2699745.html
<c:forEach>标签用于通用数据循环,它有以下属性 属 性 描 述 是否必须 缺省值 items 进行循环的项目 否 无 begin 开始条件 否 0 end 结束条件 否 集合中的最后一个项目 step 步长 否 1
- Android实现主动连接蓝牙耳机
gqdy365
android
在Android程序中可以实现自动扫描蓝牙、配对蓝牙、建立数据通道。蓝牙分不同类型,这篇文字只讨论如何与蓝牙耳机连接。
大致可以分三步:
一、扫描蓝牙设备:
1、注册并监听广播:
BluetoothAdapter.ACTION_DISCOVERY_STARTED
BluetoothDevice.ACTION_FOUND
BluetoothAdapter.ACTION_DIS
- android学习轨迹之四:org.json.JSONException: No value for
hyz301
json
org.json.JSONException: No value for items
在JSON解析中会遇到一种错误,很常见的错误
06-21 12:19:08.714 2098-2127/com.jikexueyuan.secret I/System.out﹕ Result:{"status":1,"page":1,&
- 干货分享:从零开始学编程 系列汇总
justjavac
编程
程序员总爱重新发明轮子,于是做了要给轮子汇总。
从零开始写个编译器吧系列 (知乎专栏)
从零开始写一个简单的操作系统 (伯乐在线)
从零开始写JavaScript框架 (图灵社区)
从零开始写jQuery框架 (蓝色理想 )
从零开始nodejs系列文章 (粉丝日志)
从零开始编写网络游戏 
- jquery-autocomplete 使用手册
macroli
jqueryAjax脚本
jquery-autocomplete学习
一、用前必备
官方网站:http://bassistance.de/jquery-plugins/jquery-plugin-autocomplete/
当前版本:1.1
需要JQuery版本:1.2.6
二、使用
<script src="./jquery-1.3.2.js" type="text/ja
- PLSQL-Developer或者Navicat等工具连接远程oracle数据库的详细配置以及数据库编码的修改
超声波
oracleplsql
在服务器上将Oracle安装好之后接下来要做的就是通过本地机器来远程连接服务器端的oracle数据库,常用的客户端连接工具就是PLSQL-Developer或者Navicat这些工具了。刚开始也是各种报错,什么TNS:no listener;TNS:lost connection;TNS:target hosts...花了一天的时间终于让PLSQL-Developer和Navicat等这些客户
- 数据仓库数据模型之:极限存储--历史拉链表
superlxw1234
极限存储数据仓库数据模型拉链历史表
在数据仓库的数据模型设计过程中,经常会遇到这样的需求:
1. 数据量比较大; 2. 表中的部分字段会被update,如用户的地址,产品的描述信息,订单的状态等等; 3. 需要查看某一个时间点或者时间段的历史快照信息,比如,查看某一个订单在历史某一个时间点的状态, 比如,查看某一个用户在过去某一段时间内,更新过几次等等; 4. 变化的比例和频率不是很大,比如,总共有10
- 10点睛Spring MVC4.1-全局异常处理
wiselyman
spring mvc
10.1 全局异常处理
使用@ControllerAdvice注解来实现全局异常处理;
使用@ControllerAdvice的属性缩小处理范围
10.2 演示
演示控制器
package com.wisely.web;
import org.springframework.stereotype.Controller;
import org.spring