线程池之ThreadPoolExecutor概述

Java源码里面都有大量的注释,认真读懂这些注释,就可以把握其七分工作机制了。关于ThreadPoolExecutor的解析,我们就从其类注释开始。


线程池之ThreadPoolExecutor概述_第1张图片
ThreadPoolExecutor.png

现将注释大致翻译如下:

ExecutorService(ThreadPoolExecutor的顶层接口)使用线程池中的线程执行每个提交的任务,通常我们使用Executors的工厂方法来创建ExecutorService。

线程池解决了两个不同的问题:

  1. 提升性能:它们通常在执行大量异步任务时,由于减少了每个任务的调用开销,并且它们提供了一种限制和管理资源(包括线程)的方法,使得性能提升明显;
  2. 统计信息:每个ThreadPoolExecutor保持一些基本的统计信息,例如完成的任务数量。

为了在广泛的上下文中有用,此类提供了许多可调参数和可扩展性钩子。 但是,在常见场景中,我们预配置了几种线程池,我们敦促程序员使用更方便的Executors的工厂方法直接使用。

  • Executors.newCachedThreadPool(无界线程池,自动线程回收)
  • Executors.newFixedThreadPool(固定大小的线程池);
  • Executors.newSingleThreadExecutor(单一后台线程);

注:这里没有提到ScheduledExecutorService ,后续解析。

在自定义线程池时,请参考以下指南:

一、Core and maximum pool sizes 核心和最大线程池数量

参数 翻译
corePoolSize 核心线程池数量
maximumPoolSize 最大线程池数量

线程池执行器将会根据corePoolSize和maximumPoolSize自动地调整线程池大小。

当在execute(Runnable)方法中提交新任务并且少于corePoolSize线程正在运行时,即使其他工作线程处于空闲状态,也会创建一个新线程来处理该请求。 如果有多于corePoolSize但小于maximumPoolSize线程正在运行,则仅当队列已满时才会创建新线程。 通过设置corePoolSize和maximumPoolSize相同,您可以创建一个固定大小的线程池。 通过将maximumPoolSize设置为基本上无界的值,例如Integer.MAX_VALUE,您可以允许池容纳任意数量的并发任务。 通常,核心和最大池大小仅在构建时设置,但也可以使用setCorePoolSizesetMaximumPoolSize进行动态更改。

这段话详细了描述了线程池对任务的处理流程,这里用个图总结一下

线程池之ThreadPoolExecutor概述_第2张图片
线程任务处理流程.png

二、prestartCoreThread 核心线程预启动
在默认情况下,只有当新任务到达时,才开始创建和启动核心线程,但是我们可以使用 prestartCoreThread()prestartAllCoreThreads() 方法动态调整。
如果使用非空队列构建池,则可能需要预先启动线程。

方法 作用
prestartCoreThread() 创一个空闲任务线程等待任务的到达
prestartAllCoreThreads() 创建核心线程池数量的空闲任务线程等待任务的到达

三、ThreadFactory 线程工厂

新线程使用ThreadFactory创建。 如果未另行指定,则使用Executors.defaultThreadFactory默认工厂,使其全部位于同一个ThreadGroup中,并且具有相同的NORM_PRIORITY优先级和非守护进程状态。

通过提供不同的ThreadFactory,您可以更改线程的名称,线程组,优先级,守护进程状态等。如果ThreadCactory在通过从newThread返回null询问时未能创建线程,则执行程序将继续,但可能无法执行任何任务。

线程应该有modifyThread权限。 如果工作线程或使用该池的其他线程不具备此权限,则服务可能会降级:配置更改可能无法及时生效,并且关闭池可能会保持可终止但尚未完成的状态。

四、Keep-alive times 线程存活时间

如果线程池当前拥有超过corePoolSize的线程,那么多余的线程在空闲时间超过keepAliveTime时会被终止 ( 请参阅getKeepAliveTime(TimeUnit) )。这提供了一种在不积极使用线程池时减少资源消耗的方法。

如果池在以后变得更加活跃,则应构建新线程。 也可以使用方法setKeepAliveTime(long,TimeUnit)进行动态调整。

防止空闲线程在关闭之前终止,可以使用如下方法:

setKeepAliveTime(Long.MAX_VALUE,TimeUnit.NANOSECONDS);

默认情况下,keep-alive策略仅适用于存在超过corePoolSize线程的情况。 但是,只要keepAliveTime值不为零,方法allowCoreThreadTimeOut(boolean)也可用于将此超时策略应用于核心线程

五、Queuing 队列

BlockingQueu用于存放提交的任务,队列的实际容量与线程池大小相关联。

  • 如果当前线程池任务线程数量小于核心线程池数量,执行器总是优先创建一个任务线程,而不是从线程队列中取一个空闲线程。

  • 如果当前线程池任务线程数量大于核心线程池数量,执行器总是优先从线程队列中取一个空闲线程,而不是创建一个任务线程。

  • 如果当前线程池任务线程数量大于核心线程池数量,且队列中无空闲任务线程,将会创建一个任务线程,直到超出maximumPoolSize,如果超时maximumPoolSize,则任务将会被拒绝。

这个过程参考[线程任务处理流程图.png]

主要有三种队列策略:

  1. Direct handoffs 直接握手队列
    Direct handoffs 的一个很好的默认选择是 SynchronousQueue,它将任务交给线程而不需要保留。这里,如果没有线程立即可用来运行它,那么排队任务的尝试将失败,因此将构建新的线程。
    此策略在处理可能具有内部依赖关系的请求集时避免锁定。Direct handoffs 通常需要无限制的maximumPoolSizes来避免拒绝新提交的任务。 但得注意,当任务持续以平均提交速度大余平均处理速度时,会导致线程数量会无限增长问题。

  2. Unbounded queues 无界队列
    当所有corePoolSize线程繁忙时,使用无界队列(例如,没有预定义容量的LinkedBlockingQueue)将导致新任务在队列中等待,从而导致maximumPoolSize的值没有任何作用。当每个任务互不影响,完全独立于其他任务时,这可能是合适的; 例如,在网页服务器中, 这种队列方式可以用于平滑瞬时大量请求。但得注意,当任务持续以平均提交速度大余平均处理速度时,会导致队列无限增长问题。

  3. Bounded queues 有界队列
    一个有界的队列(例如,一个ArrayBlockingQueue)和有限的maximumPoolSizes配置有助于防止资源耗尽,但是难以控制。队列大小和maximumPoolSizes需要 相互权衡

  • 使用大队列和较小的maximumPoolSizes可以最大限度地减少CPU使用率,操作系统资源和上下文切换开销,但会导致人为的低吞吐量。如果任务经常被阻塞(比如I/O限制),那么系统可以调度比我们允许的更多的线程。
  • 使用小队列通常需要较大的maximumPoolSizes,这会使CPU更繁忙,但可能会遇到不可接受的调度开销,这也会降低吞吐量。
    这里主要为了说明有界队列大小和maximumPoolSizes的大小控制,若何降低资源消耗的同时,提高吞吐量

六、Rejected tasks 拒绝任务
拒绝任务有两种情况:1. 线程池已经被关闭;2. 任务队列已满且maximumPoolSizes已满;
无论哪种情况,都会调用RejectedExecutionHandler的rejectedExecution方法。预定义了四种处理策略:

  1. AbortPolicy:默认测策略,抛出RejectedExecutionException运行时异常;
  2. CallerRunsPolicy:这提供了一个简单的反馈控制机制,可以减慢提交新任务的速度;
  3. DiscardPolicy:直接丢弃新提交的任务;
  4. DiscardOldestPolicy:如果执行器没有关闭,队列头的任务将会被丢弃,然后执行器重新尝试执行任务(如果失败,则重复这一过程);
    我们可以自己定义RejectedExecutionHandler,以适应特殊的容量和队列策略场景中。

七、Hook methods 钩子方法
ThreadPoolExecutor为提供了每个任务执行前后提供了钩子方法,重写beforeExecute(Thread,Runnable)afterExecute(Runnable,Throwable)方法来操纵执行环境; 例如,重新初始化ThreadLocals,收集统计信息或记录日志等。此外,terminated()在Executor完全终止后需要完成后会被调用,可以重写此方法,以执行任殊处理。
注意:如果hook或回调方法抛出异常,内部的任务线程将会失败并结束。

八、Queue maintenance 维护队列
getQueue()方法可以访问任务队列,一般用于监控和调试。绝不建议将这个方法用于其他目的。当在大量的队列任务被取消时,remove()purge()方法可用于回收空间。

九、Finalization 关闭

如果程序中不在持有线程池的引用,并且线程池中没有线程时,线程池将会自动关闭。如果您希望确保即使用户忘记调用 shutdown()方法也可以回收未引用的线程池,使未使用线程最终死亡。那么必须通过设置适当的 keep-alive times 并设置allowCoreThreadTimeOut(boolean) 或者 使 corePoolSize下限为0 。
一般情况下,线程池启动后建议手动调用shutdown()关闭。

总结,通过解读ThreadPoolExecutor的注释,我们对ThreadPoolExecutor应该有了比较全面的了解,其实现方式,后续章节详解。

多线程系列目录(不断更新中):
线程启动原理
线程中断机制
多线程实现方式
FutureTask实现原理
线程池之ThreadPoolExecutor概述
线程池之ThreadPoolExecutor使用
线程池之ThreadPoolExecutor状态控制
线程池之ThreadPoolExecutor执行原理
线程池之ScheduledThreadPoolExecutor概述
线程池的优雅关闭实践

英文原文如下:

/**
 * An {@link ExecutorService} that executes each submitted task using
 * one of possibly several pooled threads, normally configured
 * using {@link Executors} factory methods.
 *
 * 

Thread pools address two different problems: they usually * provide improved performance when executing large numbers of * asynchronous tasks, due to reduced per-task invocation overhead, * and they provide a means of bounding and managing the resources, * including threads, consumed when executing a collection of tasks. * Each {@code ThreadPoolExecutor} also maintains some basic * statistics, such as the number of completed tasks. * *

To be useful across a wide range of contexts, this class * provides many adjustable parameters and extensibility * hooks. However, programmers are urged to use the more convenient * {@link Executors} factory methods {@link * Executors#newCachedThreadPool} (unbounded thread pool, with * automatic thread reclamation), {@link Executors#newFixedThreadPool} * (fixed size thread pool) and {@link * Executors#newSingleThreadExecutor} (single background thread), that * preconfigure settings for theost common usage * scenarios. Otherwise, use the following guide when manually * configuring and tuning this class: * *

* *
Core and maximum pool sizes
* *
A {@code ThreadPoolExecutor} will automatically adjust the * pool size (see {@link #getPoolSize}) * according to the bounds set by * corePoolSize (see {@link #getCorePoolSize}) and * maximumPoolSize (see {@link #getMaximumPoolSize}). * * When a new task is submitted in method {@link #execute(Runnable)}, * and fewer than corePoolSize threads are running, a new thread is * created to handle the request, even if other worker threads are * idle. If there are more than corePoolSize but less than * maximumPoolSize threads running, a new thread will be created only * if the queue is full. By setting corePoolSize and maximumPoolSize * the same, you create a fixed-size thread pool. By setting * maximumPoolSize to an essentially unbounded value such as {@code * Integer.MAX_VALUE}, you allow the pool to accommodate an arbitrary * number of concurrent tasks. Most typically, core and maximum pool * sizes are set only upon construction, but they may also be changed * dynamically using {@link #setCorePoolSize} and {@link * #setMaximumPoolSize}.
* *
On-demand construction
* *
By default, even core threads are initially created and * started only when new tasks arrive, but this can be overridden * dynamically using method {@link #prestartCoreThread} or {@link * #prestartAllCoreThreads}. You probably want to prestart threads if * you construct the pool with a non-empty queue.
* *
Creating new threads
* *
New threads are created using a {@link ThreadFactory}. If not * otherwise specified, a {@link Executors#defaultThreadFactory} is * used, that creates threads to all be in the same {@link * ThreadGroup} and with the same {@code NORM_PRIORITY} priority and * non-daemon status. By supplying a different ThreadFactory, you can * alter the thread's name, thread group, priority, daemon status, * etc. If a {@code ThreadFactory} fails to create a thread when asked * by returning null from {@code newThread}, the executor will * continue, but might not be able to execute any tasks. Threads * should possess the "modifyThread" {@code RuntimePermission}. If * worker threads or other threads using the pool do not possess this * permission, service may be degraded: configuration changes may not * take effect in a timely manner, and a shutdown pool may remain in a * state in which termination is possible but not completed.
* *
Keep-alive times
* *
If the pool currently has more than corePoolSize threads, * excess threads will be terminated if they have been idle for more * than the keepAliveTime (see {@link #getKeepAliveTime(TimeUnit)}). * This provides a means of reducing resource consumption when the * pool is not being actively used. If the pool becomes more active * later, new threads will be constructed. This parameter can also be * changed dynamically using method {@link #setKeepAliveTime(long, * TimeUnit)}. Using a value of {@code Long.MAX_VALUE} {@link * TimeUnit#NANOSECONDS} effectively disables idle threads from ever * terminating prior to shut down. By default, the keep-alive policy * applies only when there are more than corePoolSize threads. But * method {@link #allowCoreThreadTimeOut(boolean)} can be used to * apply this time-out policy to core threads as well, so long as the * keepAliveTime value is non-zero.
* *
Queuing
* *
Any {@link BlockingQueue} may be used to transfer and hold * submitted tasks. The use of this queue interacts with pool sizing: * *
    * *
  • If fewer than corePoolSize threads are running, the Executor * always prefers adding a new thread * rather than queuing.
  • * *
  • If corePoolSize or more threads are running, the Executor * always prefers queuing a request rather than adding a new * thread.
  • * *
  • If a request cannot be queued, a new thread is created unless * this would exceed maximumPoolSize, in which case, the task will be * rejected.
  • * *
* * There are three general strategies for queuing: *
    * *
  1. Direct handoffs. A good default choice for a work * queue is a {@link SynchronousQueue} that hands off tasks to threads * without otherwise holding them. Here, an attempt to queue a task * will fail if no threads are immediately available to run it, so a * new thread will be constructed. This policy avoids lockups when * handling sets of requests that might have internal dependencies. * Direct handoffs generally require unbounded maximumPoolSizes to * avoid rejection of new submitted tasks. This in turn admits the * possibility of unbounded thread growth when commands continue to * arrive on average faster than they can be processed.
  2. * *
  3. Unbounded queues. Using an unbounded queue (for * example a {@link LinkedBlockingQueue} without a predefined * capacity) will cause new tasks to wait in the queue when all * corePoolSize threads are busy. Thus, no more than corePoolSize * threads will ever be created. (And the value of the maximumPoolSize * therefore doesn't have any effect.) This may be appropriate when * each task is completely independent of others, so tasks cannot * affect each others execution; for example, in a web page server. * While this style of queuing can be useful in smoothing out * transient bursts of requests, it admits the possibility of * unbounded work queue growth when commands continue to arrive on * average faster than they can be processed.
  4. * *
  5. Bounded queues. A bounded queue (for example, an * {@link ArrayBlockingQueue}) helps prevent resource exhaustion when * used with finite maximumPoolSizes, but can be more difficult to * tune and control. Queue sizes and maximum pool sizes may be traded * off for each other: Using large queues and small pools minimizes * CPU usage, OS resources, and context-switching overhead, but can * lead to artificially low throughput. If tasks frequently block (for * example if they are I/O bound), a system may be able to schedule * time for more threads than you otherwise allow. Use of small queues * generally requires larger pool sizes, which keeps CPUs busier but * may encounter unacceptable scheduling overhead, which also * decreases throughput.
  6. * *
* *
* *
Rejected tasks
* *
New tasks submitted in method {@link #execute(Runnable)} will be * rejected when the Executor has been shut down, and also when * the Executor uses finite bounds for both maximum threads and work queue * capacity, and is saturated. In either case, the {@code execute} method * invokes the {@link * RejectedExecutionHandler#rejectedExecution(Runnable, ThreadPoolExecutor)} * method of its {@link RejectedExecutionHandler}. Four predefined handler * policies are provided: * *
    * *
  1. In the default {@link ThreadPoolExecutor.AbortPolicy}, the * handler throws a runtime {@link RejectedExecutionException} upon * rejection.
  2. * *
  3. In {@link ThreadPoolExecutor.CallerRunsPolicy}, the thread * that invokes {@code execute} itself runs the task. This provides a * simple feedback control mechanism that will slow down the rate that * new tasks are submitted.
  4. * *
  5. In {@link ThreadPoolExecutor.DiscardPolicy}, a task that * cannot be executed is simply dropped.
  6. * *
  7. In {@link ThreadPoolExecutor.DiscardOldestPolicy}, if the * executor is not shut down, the task at the head of the work queue * is dropped, and then execution is retried (which can fail again, * causing this to be repeated.)
  8. * *
* * It is possible to define and use other kinds of {@link * RejectedExecutionHandler} classes. Doing so requires some care * especially when policies are designed to work only under particular * capacity or queuing policies.
* *
Hook methods
* *
This class provides {@code protected} overridable * {@link #beforeExecute(Thread, Runnable)} and * {@link #afterExecute(Runnable, Throwable)} methods that are called * before and after execution of each task. These can be used to * manipulate the execution environment; for example, reinitializing * ThreadLocals, gathering statistics, or adding log entries. * Additionally, method {@link #terminated} can be overridden to perform * any special processing that needs to be done once the Executor has * fully terminated. * *

If hook or callback methods throw exceptions, internal worker * threads may in turn fail and abruptly terminate.

* *
Queue maintenance
* *
Method {@link #getQueue()} allows access to the work queue * for purposes of monitoring and debugging. Use of this method for * any other purpose is strongly discouraged. Two supplied methods, * {@link #remove(Runnable)} and {@link #purge} are available to * assist in storage reclamation when large numbers of queued tasks * become cancelled.
* *
Finalization
* *
A pool that is no longer referenced in a program AND * has no remaining threads will be {@code shutdown} automatically. If * you would like to ensure that unreferenced pools are reclaimed even * if users forget to call {@link #shutdown}, then you must arrange * that unused threads eventually die, by setting appropriate * keep-alive times, using a lower bound of zero core threads and/or * setting {@link #allowCoreThreadTimeOut(boolean)}.
* *
* * @since 1.5 * @author Doug Lea */

你可能感兴趣的:(线程池之ThreadPoolExecutor概述)