机器学习sklearn多元线性回归2

from __future__ import print_function
from sklearn import datasets
from sklearn.linear_model import LinearRegression

loaded_data = datasets.load_boston()
data_X = loaded_data.data
data_y = loaded_data.target

model = LinearRegression()
model.fit(data_X, data_y)

print(model.predict(data_X[:4, :]))
# model.coef_表示的是x项前的参数,比如y=0.1x+3model.coef_表示的是0.1print(model.coef_)
# model.intercept_表示的是截距,比如y=0.1x+3model.intercept_表示的是3print(model.intercept_)
# 得到之前定义的参数
print(model.get_params())
# 对预测进行打分,用data_X预测的值和data_y进行对比
print(model.score(data_X, data_y))
 
 

你可能感兴趣的:(机器学习)