- 论文阅读:《针对多目标优化和应用的 NSGA-II 综述》一些关于优化算法的简介
行然梦实
优化算法论文阅读算法数学建模
前言提醒:文章内容为方便作者自己后日复习与查阅而进行的书写与发布,其中引用内容都会使用链接表明出处(如有侵权问题,请及时联系)。其中内容多为一次书写,缺少检查与订正,如有问题或其他拓展及意见建议,欢迎评论区讨论交流。内容由AI辅助生成,仅经笔者审核整理,请甄别食用。文章目录前言一些关于优化算法的缩写优化算法Ma,Haiping&Zhang,Yajing&Sun,Shengyi&Liu,Ting&S
- 多目标优化:改进蚁群算法解决实际工程问题
AI智能探索者
算法服务器linuxai
多目标优化:改进蚁群算法解决实际工程问题关键词:多目标优化、改进蚁群算法、实际工程问题、算法原理、项目实战摘要:本文聚焦于多目标优化领域,介绍了如何运用改进蚁群算法来解决实际工程问题。首先阐述了多目标优化和蚁群算法的相关概念,接着深入分析改进蚁群算法的原理和具体操作步骤,包括数学模型和公式。通过项目实战展示了该算法在实际中的应用,探讨了其实际应用场景、工具和资源推荐,以及未来发展趋势与挑战。最后进
- 20250704-基于强化学习在云计算环境中的虚拟机资源调度研究
基于强化学习在云计算环境中的虚拟机资源调度研究随着云计算规模的持续扩大,数据中心虚拟机资源调度面临动态负载、异构资源适配及多目标优化等挑战。传统启发式算法在复杂场景下易陷入局部最优,而深度强化学习(DRL)凭借序贯决策能力为该问题提供了新路径。本研究以动态多目标组合优化理论为基础,结合CloudSimPy仿真框架与TensorFlow,构建“仿真-训练-验证”闭环调度系统,重点设计动态加权多目标奖
- 三轴云台之控制算法协同技术篇
SKYDROID云卓小助手
人工智能算法机器学习网络自动化
三轴云台的控制算法协同技术是确保云台在复杂动态环境下实现高精度、高稳定性运动控制的核心,其技术体系涵盖多传感器融合、多算法协同以及多目标优化三个关键维度。以下从技术架构与实现路径展开分析:一、多传感器融合:构建环境感知基础三轴云台通过集成IMU(惯性测量单元)、编码器、视觉传感器等多源数据,构建高鲁棒性的环境感知系统。IMU与编码器融合IMU提供高频率的姿态角速度数据,编码器提供低延迟的关节位置反
- 蚁群算法原理与应用详解
本文还有配套的精品资源,点击获取简介:蚁群算法是一种基于蚂蚁寻找食物路径行为的优化算法,它能够有效解决包括旅行商问题、网络路由和多目标优化在内的复杂问题。该算法模拟蚂蚁释放信息素来找到最短路径的过程,通过模拟蚂蚁的行为,算法逐步优化选择路径。蚁群算法具有并行性和全局优化能力,但也面临早熟收敛和参数调整的挑战。它已成功应用于物流优化、通信网络、任务调度、机器学习、图像处理和生物医学等众多领域。1.蚁
- 结构力学优化算法:多目标优化:遗传算法与结构优化_2024-08-08_19-41-25.Tex
chenjj4003
材料力学2算法javascript前端人工智能线性代数
结构力学优化算法:多目标优化:遗传算法与结构优化绪论结构优化的重要性在工程设计中,结构优化扮演着至关重要的角色。它旨在通过最小化成本、重量或应力等目标,同时确保结构的强度、刚度和稳定性满足设计要求,来提高结构的性能和效率。结构优化可以帮助工程师在设计初期就避免潜在的结构问题,减少材料浪费,降低生产成本,同时提升产品的竞争力。多目标优化的概念多目标优化是指在优化过程中同时考虑多个目标函数的优化问题。
- 论文学习——基于双种群进化的不连续和不规则可行域动态约束多目标优化
臭东西的学习笔记
学习
论文题目:Dual-PopulationEvolutionBasedDynamicConstrainedMultiobjectiveOptimizationWithDiscontinuousandIrregularFeasibleRegions基于双种群进化的不连续和不规则可行域动态约束多目标优化(XiaoxuJiang,QingdaChen,Member,IEEE,JinliangDing,Se
- 动态多目标进化算法:基于迁移学习的动态多目标遗传算法Tr-NSGA-II求解CEC2015,提供完整MATLAB代码
IT猿手
动态多目标优化MATLAB动态多目标算法迁移学习matlab动态多目标进化算法动态多目标优化算法人工智能机器学习
一、Tr-NSGA-II介绍基于迁移学习的动态多目标遗传算法(TransferLearningbasedDynamicMultiobjectivenon-dominatedsortinggeneticalgorithmII,Tr-NSGA-II)是一种将迁移学习与非支配排序遗传算法(NSGA-II)相结合的优化算法,用于解决动态多目标优化问题。工作原理迁移学习的应用:Tr-NSGA-II利用迁移学
- 路径规划算法概论:从理论到实践
weixin_47233946
算法
##引言路径规划(PathPlanning)是机器人学、自动驾驶、物流优化、游戏开发等领域的核心技术,旨在为移动主体(如机器人、车辆)找到从起点到目标点的最优或可行路径。随着人工智能和计算能力的提升,路径规划算法在动态环境处理、多目标优化和实时响应方面持续演进。本文将系统梳理路径规划算法的核心分类、基本原理及应用案例。---##一、路径规划算法的核心分类###1.1传统图搜索算法**核心思想**:
- AI赋能智能制造
程序猿学长
人工智能
AI赋能智能制造是当前工业转型升级的核心驱动力之一,通过人工智能技术与传统制造流程的深度融合,推动生产模式向智能化、柔性化、高效化方向发展。以下是AI在智能制造中的关键应用与价值分析:一、AI驱动智能制造的核心场景智能设计与仿真优化生成式设计:基于AI算法(如GAN、强化学习)自动生成产品设计方案,满足性能、材料、成本等多目标优化。数字孪生:通过AI构建虚拟工厂模型,实时模拟生产过程,预测设备故障
- [智能算法]蚁群算法原理与TSP问题示例
七刀
智能算法算法
目录编辑一、生物行为启发的智能优化算法1.1自然界的群体智能现象1.2人工蚁群算法核心思想二、算法在组合优化中的应用演进2.1经典TSP问题建模2.2算法流程优化三、TSP问题实战:Python实现与可视化3.1算法核心类设计3.2参数敏感性实验3.3可视化分析四、关键参数调优指南4.1基准参数范围4.2动态调参策略4.3性能优化技巧五、扩展应用与前沿方向5.1多目标优化问题5.2深度强化学习融合
- 基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度
天天酷科研
多目标优化算法(MOB)算法多目标优化调度
基于天牛须(BAS)与NSGA-Ⅱ混合算法的交直流混合微电网多场景多目标优化调度一、引言1.1研究背景与意义在现代电力系统中,微电网凭借其独特的优势发挥着至关重要的作用。随着能源转型的不断推进,传统电力系统面临着诸多挑战,大规模新能源和新型负荷的接入,使得分布式能源的大规模接入及其带来的波动性和间歇性问题愈发突出。微电网作为一种基于分布式能源资源的小型电力系统,具有独立运行和自主调度的能力,能够有
- 材料力学优化算法:多目标优化在材料失效分析中的应用_2024-08-08_07-50-18.Tex
chenjj4003
材料力学算法java前端人工智能矩阵线性代数javascript
材料力学优化算法:多目标优化在材料失效分析中的应用材料力学优化算法:多目标优化在材料失效分析中的应用简介多目标优化的基本概念多目标优化(Multi-ObjectiveOptimization,MOO)是一种处理具有多个相互冲突目标的优化问题的方法。在传统的单目标优化中,我们通常寻找一个单一的最优解,而在多目标优化中,由于目标之间的冲突,我们寻找的是一组解,这些解在所有目标上都是最优的,这组解被称为
- MATLAB算法实战应用案例精讲-【元启发式算法】随机蛙跳跃算法(SFLA)(附matlab代码实现)
林聪木
启发式算法算法
目录前言知识储备多目标优化问题多目标元启发式优化方法算法原理数学模型算法参数更新策略算法思想算法步骤全局搜索过程局部搜索过程算法停止条件算法流程图伪代码优缺点算法拓展一种用于多目标组合优化的三阶段混合蛙跳框架多目标背包问题三阶段多目标混合蛙跳框架基于多目标背包问题的改进策略实验结果与分析基于三阶段多目标混合蛙跳算法的移动群智感知变速多任务调度移动群智感知的变速多任务调度模型求解移动群智感知变速多任
- NSGA-II与蚁群算法结合的目标规划实现
芦苇毛
本文还有配套的精品资源,点击获取简介:这个压缩包包含NSGA-II算法的实现代码,用于解决多目标优化问题,适用于工程设计、经济调度等领域。它可能还融合了蚁群算法,以处理组合优化问题。代码提供了初始化变量、非支配排序、遗传操作等关键功能,使用户能够通过算法找到多个冲突目标间的帕累托最优解集。1.NSGA-II算法在多目标优化中的应用在处理复杂问题时,工程师和研究人员经常面临需要同时优化多个目标的挑战
- HV指标——多目标进化算法性能评价指标
小可的科研日常
算法
超体积指标(HV,Hypervolume):算法获得的非支配解集与参照点围成的目标空间中区域的体积。HV值越大,说明算法的综合性能越好。优点:1.同时评价收敛性和多样性;2.能够以单个数字得到解与最优集合的接近程度,并在某种程度上得到目标空间上解的分布。缺点:1.计算复杂度高,尤其是高维多目标优化问题;2.参考点的选择在一定程度上决定超体积指标值的准确性。
- Matlab 遗传算法的库 gads
zhangfeng1133
数据分析算法
在MATLAB中,用于遗传算法的库主要是MATLAB自带的遗传算法与直接搜索工具箱(GADS)。这个工具箱提供了遗传算法的实现框架,允许用户设计复杂的遗传算法来解决具体问题。MATLAB自带的遗传算法工具箱(GADS)功能•无约束优化:可以求解无约束优化问题。•线性约束优化:支持线性约束优化问题。•非线性约束优化:能够处理非线性约束优化问题。•多目标优化:支持多目标优化问题。•自定义操作:用户可以
- 材料力学优化算法:遗传规划(GP):多目标优化与遗传规划_2024-08-08_02-48-19.Tex
chenjj4003
材料力学算法网络linuxpython人工智能
材料力学优化算法:遗传规划(GP):多目标优化与遗传规划绪论遗传规划(GP)简介遗传规划(GeneticProgramming,GP)是一种基于自然选择和遗传学原理的搜索算法,用于自动发现计算机程序、数学公式、策略或任何可表示为树结构的解决方案。它由JohnKoza在1990年代初提出,作为遗传算法(GeneticAlgorithm,GA)的扩展,特别适用于解决复杂的问题,如函数优化、机器学习、信
- 【无人机3D路径规划】基于非支配排序遗传算法NSGAII的无人机3D路径规划研究(Matlab代码实现)
@橘柑橙柠桔柚
无人机matlab开发语言
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录1概述一、引言二、NSGAII算法原理三、无人机3D路径规划问题建模四、基于NSGAII的无人机3D路径规划算法实现五、实验结果与分析六、结论与展望2运行结果3参考文献4Matlab代码实现1概述非支配排序遗传算法(NSGA)是一种多目标优化算法,旨在解决具有多个目标
- 【人工智能的数学基础】寻找多目标优化问题的帕累托最优解
AI天才研究院
自然语言处理人工智能语言模型python开发语言
文章目录1.建模多目标优化问题2.求解多目标优化问题⚪无约束的梯度下降⚪带约束的梯度下降3.优化求解过程⚪梯度内积⚪共享编码4.主次型多目标优化⚪主次型多目标优化的应用寻找多目标优化问题的帕累托最优解.paper:Multi-TaskLearningasMulti-ObjectiveOptimization多目标优化是指同时优化多个相关任务的目标,多任务学习是一个典型的多目标优化问题,其总目标函数
- 【算法】第二代遗传算法NSGA-II优化SVR超参数模型
傻傻虎虎
机器学习算法pythonNSGA-IISVRGA遗传算法回归模型
第二代遗传算法NSGA-II优化SVR超参数模型一、NSGA-II介绍二、建模目的三、NSGA-II优化SVR超参数模型3.1超参数设置3.2导入数据集3.3模型搭建3.3.1定义自变量的类3.3.2初始化种群3.3.3进化3.3.4输出最优解集合四、模型测试一、NSGA-II介绍NSGA-II(Non-dominatedSortingGeneticAlgorithmII)是一种多目标优化算法,用
- 深度强化学习(DRL)框架与多目标调度优化详解
大霸王龙
python深度学习多目标优化深度强化学习
深度强化学习(DRL)框架与多目标调度优化详解(截至2025年4月,结合最新研究进展)一、DRL主流框架及核心算法通用DRL框架RayRLlib:支持分布式训练,集成PPO、A3C、DQN等算法,适用于大规模多目标调度场景(如云资源分配)。StableBaselines3:基于PyTorch,提供模块化接口,支持自定义奖励函数和状态空间,适合动态多目标优化问题(如柔性车间调度)。TensorFor
- NSGA-II(非支配排序遗传算法II)详解与实现
ningaiiii
机器学习与深度学习数据挖掘人工智能神经网络深度学习
NSGA-II(非支配排序遗传算法II)详解与实现1.算法简介NSGA-II(Non-dominatedSortingGeneticAlgorithmII)是一种高效的多目标优化算法,由Deb等人在2002年提出。它主要解决多个目标之间相互冲突的优化问题。1.1核心特点快速非支配排序时间复杂度:O(MN²)M为目标数量,N为种群大小比NSGA的O(MN³)更高效拥挤度距离保持种群多样性不需要用户定
- 美国大学生数学建模竞赛COMAP2025-B题深度解读
@BreCaspian
数学建模数学建模
COMAP2025B题:可持续旅游管理模型深度解答一、问题背景与核心挑战背景:阿拉斯加朱诺市因冰川景观吸引大量游客(2023年160万邮轮游客),但过度旅游导致冰川退缩(2007年以来退缩8个足球场长度),并引发居民不满(住房压力、噪音污染)。需平衡经济收益(年收入3.75亿美元)、环境保护(冰川保护)与社会公平(居民满意度)。核心挑战:多目标优化:最大化经济收益vs最小化碳排放vs提升居民满意度
- Pytorch深度学习框架60天进阶学习计划 - 第34天:自动化模型调优
凡人的AI工具箱
深度学习pytorch学习人工智能自动化AI编程
Pytorch深度学习框架60天进阶学习计划-第34天:自动化模型调优今天,我们将深入研究一个让许多数据科学家和机器学习工程师头疼的问题:如何高效地调整模型超参数。我喜欢把超参数调优比作烹饪,你有最好的食材(数据)和厨具(模型架构),但如果调料(超参数)不对,再好的厨师也做不出美味的菜肴!我们将学习如何使用Optuna这个强大的工具进行自动化超参数优化,实践多目标优化策略,并对比贝叶斯优化与网格搜
- 基于改进蜣螂优化算法的无人机避障三维航迹规划
天天酷科研
无人机(DRONE)算法无人机
基于改进蜣螂优化算法的无人机避障三维航迹规划摘要针对无人机三维航迹规划中动态障碍物避障能力不足、多目标优化效率低的问题,提出一种基于改进蜣螂优化算法(FusionAdaptiveDungBeetleOptimization,FADBO)的航迹规划方法。通过设计融合路径长度、飞行高度、威胁规避与能耗约束的多目标成本函数,结合改进的FADBO算法自适应滚动机制与动态避障策略,实现复杂环境下无人机的全局
- 生成式AI驱动的高分子材料研发与应用
keyan_889
材料人工智能材料科学高分子化学AI航空航天电力工业硕博研究生
近年来,生成式人工智能(如大语言模型)在材料科学领域掀起革命性浪潮,其核心能力(从海量数据中挖掘构效关系、实现分子逆向设计)正在颠覆传统材料研发模式。以聚合物为例,传统依赖实验试错或量子计算的设计方法面临周期长、成本高、多目标优化困难等瓶颈,而生成式AI通过“数据驱动+智能生成”范式,可快速预测材料性能、生成新型分子结构,加速从实验室到产业化的进程。据《Nature》子刊统计,2020年以来基于生
- 【数学建模】熵权法
烟锁池塘柳0
数学建模数学建模算法
熵权法介绍熵权法是一种常用的用于多指标决策问题中的权重确定方法,它通过对决策矩阵的熵值进行计算,来自动地评估各个指标的权重。熵值能够反映各个指标的不确定性,熵值越小,表明该指标的信息量越大,反之亦然。熵权法可以避免人为设定权重的问题,通过熵权法确定的权重是一个客观量,只和数据本身的性质有关。熵权法在多目标优化问题中具有广泛的应用。文章目录熵权法介绍1.熵权法的基本原理2.熵权法步骤步骤1:标准化决
- Matlab 基于最小二乘向量机 LSSVM + NSGAII 多目标优化算法的工艺参数优化
前程算法屋
私信获取源码工艺参数优化matlab算法多目标优化
Matlab基于最小二乘向量机LSSVM+NSGAII多目标优化算法的工艺参数优化一、引言1.1研究背景与意义在现代工业生产中,工艺参数优化占据着举足轻重的地位。它犹如工业生产的核心引擎,直接影响着企业的生产效率、产品质量以及成本控制。从生产效率角度看,优化工艺参数能够显著提升生产速度。合理的参数设置可使生产设备处于最佳运行状态,减少不必要的停机与等待时间,让生产流程更加顺畅。以汽车制造业为例,通
- 【优化选址】基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究(Matlab代码实现)
荔枝科研社
matlab数据结构算法
欢迎来到本博客❤️❤️博主优势:博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。⛳️座右铭:行百里者,半于九十。本文目录如下:目录⛳️赠与读者1概述基于多目标遗传NSGAII、多目标免疫遗传算法求解考虑成本、救援时间和可靠性的海上救援选址多目标优化问题研究一、引言二、海上救援选址多目标优化问题分析(一)成本因素(二)救援时间因素(三)可靠性因素三、多目标遗传NSGAII算法(一)算法原理(二)在
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio