- PyTorch图像分类系列——流程概览
VAMOT
PyTorch图像分类系列pytorch深度学习分类计算机视觉
一、加载数据1.使用torchvision.datasets的方法加载经典数据集在此网址查看支持哪些经典数据集:Datasets—Torchvision0.18documentation(pytorch.org)data_train=torchvision.datasets.CIFAR10(root="CIFAR10",train=True,transform=ToTensor(),target_
- Transformers基础组件—Datasets
小蒋的学习笔记
python人工智能机器学习
目录datasets基本使用加载在线数据集加载数据集合集中的某一项任务按照数据集划分进行加载查看数据集数据集划分数据选取与过滤数据映射保存与加载加载本地数据集直接加载文件作为数据集加载文件夹内全部文件作为数据集通过预先加载的其他格式转换加载数据集通过自定义加载脚本加载数据集DatasetwithDataCollatordatasets基本使用fromdatasetsimport*加载在线数据集da
- 嵌入式学习-PyTorch(4)-day21
LGGGGGQ
学习
1、torchvision中数据集的使用认识官方的一些数据集Datasets—Torchvision0.22documentation试了一下CIFAR10数据集,知道了如何下载官方数据集和展示他们去tensorboard中importtorchvisionfromtorch.utils.tensorboardimportSummaryWriter#处理数据集dataset_transform=t
- orb-slam run rgbd data
hetongqiyue
计算机视觉slam
TUM数据集准备+RGB-D运行从这个网址下载tum数据集[http://vision.in.tum.de/data/datasets/rgbd-dataset/download]并且解压缩。使用python脚本关联RGB图像和深度图像[associate.py],[http://vision.in.tum.de/data/datasets/rgbd-dataset/tools].我们已经提供了一
- ImportError: cannot import name ‘get_metadata_patterns‘ from ‘datasets.data_files‘这通常是由于 modelscope
微信公众号:AI创造财富
pythonlinux机器学习
base)powersys@powerSys:~/work/modelscope$python1.pyTraceback(mostrecentcalllast):File"/home/powersys/work/modelscope/1.py",line1,infrommodelscope.pipelinesimportpipelineFile"/home/powersys/work/minico
- python打卡训练营Day41
珂宝_
python打卡训练营python
importnumpyasnpfromtensorflowimportkerasfromtensorflow.kerasimportlayers#加载和预处理数据(x_train,y_train),(x_test,y_test)=keras.datasets.mnist.load_data()x_train=x_train.reshape(-1,28,28,1).astype("float32")
- Pytorch学习 day06(torchvision中的datasets、dataloader)
丿罗小黑
Pytorchpytorch学习人工智能
torchvision的datasets使用torchvision提供的数据集API,比较方便,如果在pycharm中下载很慢,可以URL链接到迅雷中进行下载(有些URL链接在源码里)用来告诉程序,数据集存储的位置,共有多少样本等代码如下:importtorchvision#导入torchvision库#使用torchvision的datasets模块,模块中包含CIFAR10、CIFAR100、
- 深度学习--一个分类的例子
惊讶的猫
人工智能深度学习机器学习
说明:本文会实现自定义模型实现对MINIST数据集的训练,训练完之后还会使用测试集进行测试。所依托的训练集和测试集都是由datasets.MNIST获取到的。步骤下载数据现在来介绍加载MNIST数据集并准备训练和测试数据的逻辑。数据预处理:transforms.Compose创建了一个数据预处理管道,将多个数据转换操作组合在一起。将图像转换为PyTorch的张量(tensor).对图像进行标准化,
- 工控领域多模态LLM测试集
liliangcsdn
语言模型人工智能
MMADMultimodalLargeLanguageModelsinIndustrialAnomalyDetection从4个数据集收集8366样本,涵盖38类工业产品,生成39,672个样本,覆盖7个核心任务。https://github.com/jam-cc/MMAD.githttps://huggingface.co/datasets/jiang-cc/MMAD天池铝型材表面缺陷数据集数据
- Day14shap图绘制
m0_62568655
python训练营python
#作业1importshapimportxgboostimportpandasaspdX,y=shap.datasets.adult()model=xgboost.XGBClassifier(eval_metric='mlogloss').fit(X,y)explainer=shap.TreeExplainer(model)shap_values=explainer.shap_values(X)#
- Hugging Face基础入门
HuggingFace基础入门模型与分词器进阶用法什么是HuggingFace?Transformers库全景图HuggingFace与深度学习的融合安装Transformers与Datasets第一个Pipeline程序:一行代码跑大模型在CPU、GPU上运行的区别pipeline工作原理常见任务类型介绍pipeline参数详解与技巧模型命名规则解析模型下载缓存机制如何从Hub下载或上传模型什么
- 《Pytorch深度学习实践》ch5-Logistic回归
拾零吖
机器学习深度学习pytorch线性回归
------B站《刘二大人》1.Classification经典的分类数据集:MNIST(0-9)导入数据集:(路径,训练集/测试集,是否下载)importtorchvisiontrain_set=torchvision.datasets.MINIST(root='../dataset/mnist',train=True,download=True)test_set=torchvision.dat
- pytorch之猫狗识别项目
mkijhwert
pytorch人工智能python深度学习机器学习opencv神经网络
1.导入资源包资源包:importtorchvision:PyTorch提供的视觉库,包含了常用的计算机视觉模型架构、数据集以及图像转换工具。fromtorchvisionimportdatasets,models:导入torchvision中的datasets和models模块,用于加载常用的数据集和模型。importsubprocess:用于调用系统子进程执行命令。fromtkinterimp
- python第31天打卡
zdy1263574688
python打卡python开发语言
importnumpyasnpfromtensorflowimportkerasfromtensorflow.kerasimportlayers,optimizers,utils,datasets#数据加载和预处理函数defload_and_preprocess_data():(x_train,y_train),(x_test,y_test)=datasets.mnist.load_data()#
- vr--中风患者模型搭建
qwetyunk
vr
1.数据集:https://www.kaggle.com/datasets/mustafamarwat/mused-i-semg-dataset-for-stroke-rehabilitation2.https://github.com/MustafaMarwat/MUSED-1MUSED-I数据集在采集过程中使用了MyoArmband设备。MyoArmband是一种可穿戴设备,它内置了一组传感器
- Torchvision的数据集使用
Indulge in the deam
图像处理pytorch深度学习人工智能
在pytorch官网中可以下载许多数据集这是Torchvision的数据集Datasets—Torchvision0.12documentation下载CIFAR10数据集,root(存储位置):存放在./dataset文件夹中,train(是否为训练集),download(是否下载),train_set=torchvision.datasets.CIFAR10(root="./dataset",
- 第P10周:PyTorch实现车牌识别
失眠航行器
pytorchpython
第P10周:PyTorch实现车牌识别本文为365天深度学习训练营中的学习记录博客原作者:K同学啊在之前的案例中,我们多是使用datasets.ImageFolder函数直接导入已经分类好的数据集形成Dataset,然后使用DataLoader加载Dataset,但是如果对无法分类的数据集,我们如何导入,并进行识别呢?本周内容将自定义一个MyDataset加载车牌数据集并完成识别⛽我的环境语言环境
- 用torch写一个简单网络训练FashionMNIST数据集参考torch官网
李烁.
torch深度学习机器学习人工智能
importtorchimporttorch.nnasnnimporttorch.optimasoptimfromtorch.utils.dataimportDataLoaderfromtorchvisionimportdatasetsfromtorchvision.transformsimportToTensortraining_data=datasets.FashionMNIST(root="
- load_dataset()的使用
健康胡
pythonpythonpytorch
load_dataset()的作用:load_dataset()是HuggingFace的datasets库中的一个函数,用于加载不同格式的数据集。它可以直接从HuggingFace的数据集库中加载数据集,或从本地文件加载,支持多种格式如csv、json、text等。加载数据集:load_dataset()可从HuggingFaceHub加载公开数据集,也支持从本地路径加载自定义数据集。处理多种格
- 【BUG】mmdetection ValueError: need at least one array to concatenate
何如千泷
BUGbugmmdetection
问题:使用mmdetection框架使用COCO格式训练自定义数据集时出现如下错误:ValueError:needatleastonearraytoconcatenate解决方法:修改mmdet/datasets/coco.py文件,将CocoDataset类中的METAINFO修改为自己数据集的类别信息,具体如下:#METAINFO={#'classes':#('person','bicycle
- 《AI大模型应知应会100篇》第53篇:Hugging Face生态系统入门
带娃的IT创业者
人工智能
第53篇:HuggingFace生态系统入门——从模型获取到部署的全流程实战指南摘要在人工智能快速发展的今天,HuggingFace已成为自然语言处理(NLP)领域最具影响力的开源平台之一。它不仅提供丰富的预训练模型、强大的工具库,还构建了一个开放的模型共享社区。本文将深入介绍HuggingFace生态系统的核心组件,包括Transformers、Datasets、Tokenizers和Hub平台
- Pytorch深度学习10:车牌号识别
小叮当爱咖啡
深度学习pytorch人工智能
>-**本文为[365天深度学习训练营](https://mp.weixin.qq.com/s/pgg8O9Hv8fiLBc8xbFm4HQ)中的学习记录博客**>-**原作者:[K同学啊|接辅导、项目定制](https://mtyjkh.blog.csdn.net/)*在之前的案例中,我们多是使用datasets.ImageFolder函数直接导入已经分类好的数据集形成Dataset,然后使用D
- 查看MNIST数据集中的图片
honeysuckle_luo
python人工智能深度学习pytorch
介绍MNIST是一个手写数字的数据集,对里面的数据进行了分类处理,将每一张图片放到自己对应的文件夹下。这里只使用了训练集,要看测试集的可以自行查看。下载mnist数据集通过pytorch下载数据集,保存在当前目录下的root文件夹下。importtorchvisiondataset=torchvision.datasets.MNIST("./root",train=True,transform=t
- 鸢尾花python贝叶斯分类_机器学习-利用三种分类器实现鸢尾花分类
weixin_39755853
鸢尾花python贝叶斯分类
利用决策树,KNN和朴素贝叶斯三种分类器,对鸢尾花数据集进行分类。下面是具体的流程和代码:1、数据读取:实验数据是直接加载的sklearn内置的鸢尾花数据集,共150条数据,包含4个特征,而且是一个三分类问题。fromsklearnimportdatasets#导入方法类iris=datasets.load_iris()#加载iris数据集iris_feature=iris.data#加载特征数据
- 【KWDB 创作者计划】_深度学习篇---数据获取
Ronin-Lotus
程序代码篇上位机知识篇深度学习篇深度学习人工智能python数据获取
文章目录前言一、公开数据集资源库1.综合型数据集平台KaggleDatasets(https://www.kaggle.com/datasets)GoogleDatasetSearch(https://datasetsearch.research.google.com)UCIMachineLearningRepository(https://archive.ics.uci.edu/ml)2.计算机
- 如何调用 RAGflow 的 API 接口?
徐福记c
服务器运维
如果第三方脚本需要调用RAGflow的API接口,向知识库提供内容并进行RAG处理,通常需要调用以下相关接口:1.创建数据集(Createdataset)接口:POST/api/v1/datasets作用:在向知识库提供内容之前,需要先创建一个数据集(知识库)。这个接口允许你指定数据集的名称、语言、嵌入模型等参数。示例:curl--requestPOST\--urlhttp://{address}
- load_dataset函数
tag:「爆裂鼓手」
随笔深度学习机器学习人工智能
HuggingFace的datasets库中的load_dataset函数是一个核心工具,用于快速加载和处理多种格式的数据集。主要功能1.支持多种数据源从HuggingFaceHub加载公开数据集(如IMDB、SQuAD)读取本地文件(CSV/JSON/文本等)解析内存数据(如Python字典或PandasDataFrame)2.自动处理数据格式自动识别文件格式(无需手动指定CSV/JSON等)处
- 用 Iris数据做决策树分析
alpha xu
决策树算法机器学习python人工智能
文章目录Iris数据的准备1.直接从sklearn.datasets加载或转化成文件已备本地使用2.可以在https://archive.ics.uci.edu/dataset/53/iris下载过程示例代码如下生成的决策树如下:生成的分析报告如下:决策树模型分析报告1.模型性能2.特征重要性3.决策规则Iris数据的准备1.直接从sklearn.datasets加载或转化成文件已备本地使用代码如
- Highcharts Grid Crack,Handle Large Datasets with a Fast
SEO-狼术
netDelphi控件java数据库开发语言
HighchartsGridCrack,HandleLargeDatasetswithaFastHighchartsGriddeliverssmooth,high-performancerenderingofmassivedatavolumesthroughintelligentrowvirtualization.HighchartsGridisafeature-richdatagridcompo
- Sklearn入门之datasets的基本用法
起个破名想半天了
机器学习sklearn人工智能python
、Sklearn全称:Scipy-toolkitLearn是一个基于scipy实现的的开源机器学习库。它提供了大量的算法和工具,用于数据挖掘和数据分析,包括分类、回归、聚类等多种任务。本文我将带你了解并入门Sklearn下的datasets在机器学习中的基本用法。获取方式pipinstallscikit-learn模块结构在Python中,要想熟练地使用一个库来完成各种任务,那么我们必须得对这个库
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比