- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 【大模型微调实战】4. P-Tuning爆款文案生成:让模型学会小红书“爽感”写作,转化率提升300%
AI_DL_CODE
大模型微调P-Tuning小红书文案爆款生成情绪强化自然语言生成提示工程
摘要:在内容营销竞争白热化的当下,普通文案已难以突破流量壁垒。本文聚焦P-Tuning技术在小红书爆款文案生成中的落地应用,通过参数化提示向量优化,将抽象的“爽感”写作转化为可量化、可训练的技术指标。文中提出“六步成文法”,从情绪化数据集构建到爆款元素复刻,完整拆解如何用RTX3060级显卡实现0.1%参数量微调,使文案点击率从2.1%提升至8.7%,爆文率提高5倍,单条文案带货超8万元。核心创新
- Spring AI Alibaba 快速入门指南(适合初学者)
会飞的架狗师
AIspring人工智能java
如果你是刚接触AI开发或Spring框架的初学者,不用担心,本指南会用简单易懂的语言带你一步步了解并使用SpringAIAlibaba。一、什么是SpringAIAlibaba(小白也能懂)简单来说,SpringAIAlibaba就是一个“工具包”,它把阿里巴巴的AI技术(比如通义千问大模型、向量数据库等)和大家常用的Spring框架“打包”到了一起。**打个比方:**就像你想做蛋糕(开发AI应用
- 企业级RAG的数据方案选择 - 向量数据库、图数据库和知识图谱
南七小僧
AI技术产品经理网站开发人工智能数据库知识图谱人工智能
如何为企业RAG选择合适的数据存储方式摘要:本文讨论了矢量数据库、图数据库和知识图谱在解决信息检索挑战方面的重要性,特别是针对企业规模的检索增强生成(RAG)。看看海外人工智能企业Writer是如何利用知识图谱增强企业级RAG。要点概要:矢量数据库高效存储数据,但缺乏上下文和关联信息。图数据库优先考虑数据点之间的关系,受益于关系结构。知识图谱在语义存储方面表现出色,由于其能够编码丰富的上下文信息,
- OpenGL里相机的运动控制
qq_42987967
计算机图形学学习笔记数码相机
相机的核心构造一个是glm::lookAt函数,一个是glm::perspective函数,本文相机的一切运动都在于如何构建相应的参数传入上述两个函数里。glm::mat4glm::lookAt(glm::vec3const&eye,//相机所在位置glm::vec3const¢er,//要凝视的点glm::vec3const&up//相机上向量);glm::mat4perspective
- BGE-M3模型结合Milvus向量数据库强强联合实现混合检索
在基于生成式人工智能的应用开发中,通过关键词或语义匹配的方式对用户提问意图进行识别是一个很重要的步骤,因为识别的精准与否会影响后续大语言模型能否检索出合适的内容作为推理的上下文信息(或选择合适的工具)以给出用户最符合预期的回答。在本篇文章中,我将尽可能详细地介绍想达成准确识别用户提问意图的解决方案之一,即基于功能强大的BGE-M3模型和Milvus向量数据库实现混合检索(稠密向量densevect
- Milvus 实战全流程
学习路径总览1.Milvus基础知识什么是向量数据库?Milvus的核心概念(collection、field、index、partition、segment)Milvus和Faiss、Annoy、HNSW的区别2.安装与部署Docker快速部署Milvus(推荐)本地开发环境安装使用MilvusLite本地测试3.数据建模与管理创建Collection与Schema定义(包含向量字段和元数据字段
- 基于Milvus和BGE-VL模型实现以图搜图
时间的痕迹01
milvus
背景最近再做项目的时候,里面有个AI检索的功能,其中一个点就是要实现以图搜图,也就是用户上传一张图,要找出相似度比较高的图,比如下面这样,第一张是原图,第二张是图中的一部分,用户上传第二张图,要能检索到第一张完整的图实现思路整个实现的核心就是用向量检索,也就是在运营端上传第一张图片的时候,先把整个图片转换为向量,存储到向量数据库中,然后用户在检索的时候,把第二张图再转换为向量,与第一张图的向量进行
- 数据挖掘算法:KNN、SVM、决策树详解
大力出奇迹985
数据挖掘算法支持向量机
本文将详细解析数据挖掘领域中常用的三种经典算法:KNN(K近邻算法)、SVM(支持向量机)和决策树。首先分别阐述每种算法的核心原理、实现步骤,再分析它们的优缺点及适用场景,最后对这三种算法进行综合对比与总结。通过本文,读者能全面了解这三种算法的特性,为实际数据挖掘任务中算法的选择提供参考,助力提升数据处理与分析的效率和准确性。在当今信息爆炸的时代,数据挖掘技术在各行各业发挥着至关重要的作用,而算法
- 声纹识别系统(MFCC特征+DTW/SVM分类)
佩爷0107
支持向量机分类算法梅尔频率倒谱系数动态时间规整
摘要本毕业设计实现了一个完整的声纹识别系统,采用梅尔频率倒谱系数(MFCC)作为声学特征提取方法,结合动态时间规整(DTW)和支持向量机(SVM)两种分类算法进行说话人识别。系统包含语音预处理、特征提取、模型训练和识别测试等完整流程,并通过实验对比两种分类算法的性能。第一章绪论1.1研究背景与意义声纹识别(SpeakerRecognition)是生物特征识别技术的一种,通过分析语音信号中包含的说话
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- Java中的模型API、RAG与向量数据库:构建智能应用的新范式
张道宁
人工智能
引言在当今人工智能迅猛发展的时代,Java开发者如何利用最新的AI技术构建智能应用?本文将深入探讨模型API、检索增强生成(RAG)和向量数据库这三种关键技术,以及它们如何协同工作来提升Java应用的智能化水平。一、模型API:Java中的AI能力接入1.1什么是模型API模型API是大型语言模型(LLM)提供的编程接口,允许开发者通过HTTP请求与AI模型交互。在Java生态中,我们可以通过多种
- 打造专属知识库:手把手教你构建RAG系统
RAG通常指的是"Retrieval-AugmentedGeneration",即“检索增强的生成”。这是一种结合了检索(Retrieval)和生成(Generation)的机器学习模型,通常用于自然语言处理任务,如文本生成、问答系统等。我们通过一下几个步骤来完成一个基于京东云官网文档的RAG系统数据收集建立知识库向量检索提示词与模型数据收集数据的收集再整个RAG实施过程中无疑是最耗人工的,涉及到
- 线性代数(6)——向量空间
Irene_hong
1、向量空间(VectorSpace)对于向量空间的维度:Example:=all2-dimrealvectors,如,,相当于一个x-y平面;=allvectorswith3components;=allcolumnvectorswithnrealcomponents;1.1子向量空间(Sub-spaceofVectorSpace)在乘法/加法运算下,子向量空间必须是封闭的,不能超出原向量空间;
- HTML5+JavaScript动画基础 完整版 中文pdf扫描版
不一样的女孩6
《HTML5+JavaScript动画基础》包括了基础知识、基础动画、高级动画、3D动画和其他技术5大部分,分别介绍了动画的基本概念、动画的JavaScript基础、动画中的三角学、渲染技术、速度向量和加速度、边界与摩擦力、用户交互:移动物体、缓动与弹动、碰撞检测、坐标旋转与斜面反弹、撞球物理、粒子与万有引力、正向运动学:让事物行走、反向运动学:拖曳与伸出、三维基础、三维线条与填充、背面剔除与三维
- Java:实现找到R2中两个向量夹角中较小的那个算法(附带源码)
Katie。
Java算法完整教程java算法开发语言
目录项目背景详细介绍项目需求详细介绍相关技术详细介绍实现思路详细介绍完整实现代码代码详细解读项目详细总结项目常见问题及解答扩展方向与性能优化1.项目背景详细介绍在计算机图形学、机器人导航、物理模拟和数据分析中,常需要计算二维平面(R2\mathbb{R}^2)中两个向量之间的夹角。夹角度量能帮助我们判断方向差异、进行路径规划、控制转向和计算投影等操作。具体场景包括:图形旋转与动画:根据两帧之间的方
- 向量的长度
大龙10
书名:代码本色:用编程模拟自然系统作者:DanielShiffman译者:周晗彬ISBN:978-7-115-36947-5目录1.5向量的长度一、向量长度的计算原理向量本身和它的两个分量(x分量和y分量)围成了一个直角三角形。三角形的直角边是它的两个分量,斜边是它本身。一个向量的长度:在PVector中,我们这么实现它:floatmag(){returnsqrt(x*x+y*y);}二、示例,向
- 玩转 Milvus(一):解锁向量数据库的秘密,拥抱Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
引言:向量数据库,AI时代的“超级引擎”想象一下,你上传一张猫咪照片,系统瞬间从百万张图片中挑出最相似的几张;或者在购物APP中点开一件T恤,推荐栏立刻展示你心动的搭配。这些智能体验的背后,藏着一个秘密武器——高维向量。通过深度学习模型,文本、图像、音频被转化为一串数字,捕捉它们的“灵魂”。但如何在海量向量中快速找到“最像”的那一个?传统数据库如MySQL或MongoDB束手无策,而向量数据库横空
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- 讨论神经网络中的卷积与数学中的卷积有何不同
陶大明
1.当提到神经网络中的卷积时,我们通常是指由多个并行卷积组成的运算。(因为单个核只能特区一种类型的特征,我们usually希望可以在多个位置提取多个特征)2.输入也不仅仅是实值的网格,而是由一系列观测数据的向量构成的网格。我们有的时候会希望跳出核中的一些位置来降低计算的开销(相应的代价是提取特征没有先前那么好了)我们就把这个过程看作对全卷积函数输出的下采样(downsampling).如果只是在输
- 黑猴子的家:Spark RDD 编程进阶 之 广播变量
黑猴子的家
广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个Spark操作使用。比如,如果你的应用需要向所有节点发送一个较大的只读查询表,甚至是机器学习算法中的一个很大的特征向量,广播变量用起来都很顺手。传统方式下,Spark会自动把闭包中所有引用到的变量发送到工作节点上。虽然这很方便,但也很低效。原因有二:首先,默认的任务发射机制是专门为小任务进行优化的;其次,事实上你可能
- svm支持向量机实例--线性非线性实例代码可运行
fromsklearnimportsvmimportnumpyasnpimportsklearn#因为Python中的sklearn库也集成了SVM算法,所以在Python中一样可以使用支持向量机做分类#取数据集path=r'D:\svm\iris.data'#Iris.data的数据格式如下:共5列,前4列为样本特征,第5列为类别,分别有三种类别Iris-setosa,Iris-versicol
- 实验七 SVM支持向量机
萍萍无奇a
支持向量机机器学习人工智能
目录一、SVM定义二、SVM基本概念及其优缺点1、间隔2、SVM核心3、支持向量4、支持向量机的基本思想5、优缺点三、损失函数四、代码实现1、算法实现基本流程2、代码解析3、整体代码五、结果截图及解释1、结果截图2、结果解释六、实验总结一、SVM定义支持向量机(SupportVectorMachine,SVM)是一种经典的监督学习算法,用于解决二分类和多分类问题。其核心思想是通过在特征空间中找到一
- 【SVM】支持向量机实例合集
KENYCHEN奉孝
支持向量机算法机器学习
基于Java的SVM(支持向量机)实例合集以下是一个基于Java的SVM(支持向量机)实例合集,包含核心代码示例和应用场景说明。这些例子基于流行的机器学习库(如LIBSVM、Weka、JSAT)实现。数据准备与加载使用LIBSVM格式加载数据集://加载LIBSVM格式数据svm_problemprob=newsvm_problem();prob.l=dataSize;//样本数量prob.x=n
- 大语言模型 LLM 通过 Excel 知识库 增强日志分析,根因分析能力的技术方案(1):总体介绍
shiter
人工智能系统解决方案与技术架构语言模型excel人工智能
文章大纲1.核心目标2.系统总体架构3.GoogleCloud端到端方案(含无RAG&RAG双模式)3.1无RAG:Function-Calling查表模式3.2RAG:托管式向量检索4.开源轻量级方案5.数字孪生联合验证(实验性)6.知识图谱增强(Neo4j)7.监控与持续优化(CometLLM)8.实施路线图(4~10周)9.典型案例速览10.一键复现仓库11.参考文献1.核心目标让LLM在“
- RAG 技术深度面试题:架构、优化与实践应用
居7然
大模型面试架构人工智能机器学习算法面试
1.RAG基础架构设计问题:对比单阶段检索(Single-stageRetrieval)与两阶段检索(Two-stageRetrieval)在RAG系统中的架构差异,说明在企业知识库场景下为何优先选择两阶段检索?答案:单阶段检索直接通过向量数据库对用户query进行一次相似度匹配返回结果,架构简单但精度有限;两阶段检索则先通过召回阶段(如向量检索+关键词检索)获取候选文档,再通过重排序阶段(如Cr
- 详解C++中的全局算法
超级飞侠12138
C++c++开发语言c语言
全局算法在C++中,全局算法通常指的是不依赖于特定数据结构或对象,而是可以在各种数据集合上使用的通用算法。这些算法通常定义在标准模板库(STL)中,因此可以在整个程序中重复使用,适用于多种数据类型。STL中的算法可以作用于数组、向量、列表、集合、映射等容器。使用这些算法时,通常需要包含头文件。(1)遍历算法std::for_eachstd::for_each算法用于对容器中的每个元素执行指定的函数
- 第 7 篇:支持向量机(SVM)——在数据旷野中,划出最宽的“安全边界”
老马爱知
人工智能#机器学习基石支持向量机算法机器学习人工智能分类算法核技巧硬核科普
《人工智能AI之机器学习基石》系列⑦专栏核心理念:用通俗语言讲清楚机器学习的核心原理,强调“洞察+技术理解+应用连接”,构建一个完整的、富有启发性的知识体系。
- 看c++primer知识点总结(基础部分)
伯爵..
c++
看c++primer知识点总结(基础部分)提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档文章目录看c++primer知识点总结(基础部分)前言一、变量和基本类型1.声明2.作用域3.const引用4.指向常量的指针(和引用规则一样)5.常量指针(顶层const)6.处理类型7.自定义数据结构二、字符串、向量和数组1.using声明2.标准库类型string初始化stringstr
- Ros2_学习整理_坐标系变换_11(赵虚左老师)
干掉乔治的猪
Ros2理论与实践学习python机器人c++ros2
坐标变换1.坐标变换概述tf(坐标变换)允许用户随着时间跟随多个坐标系,他在时间缓冲的树结构中维护坐标帧之间的关系。允许用户任意时间点、任意坐标帧之间变换点、向量等。完整的坐标变换由坐标变换广播方和坐标变换监听方组成广播方:发布一组坐标系相对关系。监听方:将多组坐标系相对关系融合为一颗坐标树并实现任意坐标系之间或坐标系与坐标点之间的变换。2.坐标系变换广播2-1.坐标变换相对关系:1、静态坐标系相
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。