- DatawhaleAI夏令营学习活动
若天明
学习
学习任务如下:##赛事任务参赛者需基于提供的带货视频文本及评论文本数据,完成以下三阶段分析任务:-【商品识别】精准识别推广商品;-【情感分析】对评论文本进行多维度情感分析,涵盖维度见数据说明;-【评论聚类】按商品对归属指定维度的评论进行聚类,并提炼类簇总结词。###数据说明本次挑战赛为参赛选手提供包含85条脱敏后的带货视频数据及6477条评论文本数据,数据包括少量有人工标注结果的训练集(仅包含商品
- Datawhale X 魔塔 Ai夏令营 --深度学习基础
一、局部极小值与全局极小值全局极小值:在损失函数的整个定义域内,损失值最小的点。这是我们在训练深度学习模型时希望找到的点,因为它代表着模型的最佳性能。局部极小值:在损失函数的一个局部区域内,损失值达到最小,但在整个函数定义域内可能不是最小的。当优化算法陷入局部极小值时,它可能会误以为已经找到了全局最优解,从而停止搜索。局部极小值的检测两种直观的方法来检测局部极小值:可视化方法:对于低维问题,我们可
- Datawhale组队学习打卡-Fun-transformer-Task3Encoder
宇宙第一小甜欣
学习transformer深度学习
今天的内容主要是Encoder部分的具体流程,多头注意力和交叉注意力,还是会有比较多的公式来厘清每部分的输入和输出以及对应的方法。Encoder如第一篇所说,Encoder是Transformer的第一部分,其主要任务是将输入序列(如文本、词语或字符)编码为一个上下文丰富的表示,Encoder的输出是Decoder的输入的一部分(用作Attention机制中的和)。1.Encoder的整体结构堆叠
- DataWhale 二月组队学习-深入浅出pytorch-Task04
-273.15K
DataWhale组队学习学习pytorch人工智能
一、自定义损失函数1.损失函数的作用与自定义意义在深度学习中,损失函数(LossFunction)用于衡量模型预测结果与真实标签之间的差异,是模型优化的目标。PyTorch内置了多种常用损失函数(如交叉熵损失nn.CrossEntropyLoss、均方误差nn.MSELoss等)。但在实际任务中,可能需要针对特定问题设计自定义损失函数,例如:处理类别不平衡问题(如加权交叉熵)实现特殊业务需求(如对
- 【DW11月-深度学习】Task03前馈神经网络
沫2021
参考链接:https://datawhalechina.github.io/unusual-deep-learning/#/4.%E5%89%8D%E9%A6%88%E7%A5%9E%E7%BB%8F%E7%BD%91%E7%BB%9C一、神经元模型2.1神经元1943年,美国神经生理学家沃伦·麦卡洛克(WarrenMcCulloch)和数学家沃尔特·皮茨(WalterPitts)对生物神经元进行
- #Datawhale组队学习#7月-强化学习Task1
fzyz123
Datawhale组队学习强化学习人工智能AI
这里是Datawhale组织的组队学习《强化学习入门202507》,Datawhale是一个开源的社区。第一章绪论1.1为什么要学习强化学习?强化学习(ReinforcementLearning,RL)是机器学习中专注于智能体(Agent)如何通过与环境交互学习最优决策策略的分支。与监督学习依赖静态数据集、无监督学习聚焦数据内在结构不同,强化学习的核心在于序贯决策:智能体通过试错探索环境,根据行动
- “Datawhale AI夏令营”基于带货视频评论的用户洞察挑战赛
fzyz123
DatawhaleAI夏令营人工智能Datawhale大模型技术NLP深度学习AI夏令营
前言:本次是DatawhaleAI夏令营2025年第一期的内容,赛事是:基于带货视频评论的用户洞察挑战赛(科大讯飞AI大赛)一、赛事背景在直播电商爆发式增长浪潮中,短视频平台积累的海量带货视频及用户评论数据蕴含巨大商业价值。这些数据不仅是消费者体验的直接反馈,更是驱动品牌决策的关键资产。用户洞察的核心在于视频内容与评论数据的联合挖掘:通过智能识别推广商品分析评论中的情感表达与观点聚合精准捕捉消费者
- 全球DeepFake攻防挑战赛&DataWhale AI 夏令营——图像赛道
czijin
人工智能deeplearning
全球DeepFake攻防挑战赛&DataWhaleAI夏令营——图像赛道赛题背景随着人工智能技术的迅猛发展,深度伪造技术(Deepfake)正成为数字世界中的一把双刃剑。这项技术不仅为创意内容的生成提供了新的可能性,同时也对数字安全构成了前所未有的挑战。Deepfake技术可以通过人工智能算法生成高度逼真的图像、视频和音频内容,这些内容看起来与真实的毫无二致。然而,这也意味着虚假信息、欺诈行为和隐
- 【GitHub开源项目实战】LLM-Cookbook 中文大模型工程手册全解析:多场景落地应用与技术优化路径深度实践
GitHub开源实战|LLM-Cookbook中文大模型工程手册全解析:多场景落地应用与技术优化路径深度实践关键词LLM-Cookbook,中文大模型,Datawhale,大模型实战,LangChain应用,多模态集成,RAG系统,国产模型适配,大模型微调,开源实战解析摘要LLM-Cookbook是由Datawhale社区发起并持续维护的中文大模型应用工程实践项目,旨在系统性总结大模型在中文语境下
- Happy-LLM 第二章 Transformer
HalukiSan
transformer深度学习人工智能
Transform架构图片来自[Happy-llm](happy-llm/docs/chapter2/第二章Transformer架构.mdatmain·datawhalechina/happy-llm),若加载不出来,请开梯子注意力机制前馈神经网络每一层的神经元都与上下两层的每一个神经元完全连接数据在其中只向前流动,用于处理静态的数据,进行图像识别或者分类,但是该网络没有记忆能力,数据在它里面没
- 大模型学习 (Datawhale_Happy-LLM)笔记7: Encoder-Decoder PLM
lxltom
学习笔记languagemodel自然语言处理神经网络人工智能深度学习
大模型学习(Datawhale_Happy-LLM)笔记7:Encoder-DecoderPLM1.Encoder-Decoder架构概述1.1架构基础Encoder-DecoderPLM是基于原始Transformer架构的完整实现,它同时保留了编码器(Encoder)和解码器(Decoder)两个核心组件。这种设计使得模型能够兼具文本理解和生成的双重能力,特别适合处理序列到序列(Seq2Seq
- 阅读笔记(2) 单层网络:回归
a2507283885
笔记
阅读笔记(2)单层网络:回归该笔记是DataWhale组队学习计划(共度AI新圣经:深度学习基础与概念)的Task02以下内容为个人理解,可能存在不准确或疏漏之处,请以教材为主。1.从泛函视角来看线性回归还记得线性代数里学过的“基”这个概念吗?一组基向量是一组线性无关的向量,它们通过线性组合可以张成一个向量空间。也就是说,这个空间里的任意一个向量,都可以表示成这组基的线性组合。函数其实也可以看作是
- 【机器学习实战】Datawhale夏令营2:深度学习回顾
城主_全栈开发
机器学习机器学习深度学习人工智能
#DataWhale夏令营#ai夏令营文章目录1.深度学习的定义1.1深度学习&图神经网络1.2机器学习和深度学习的关系2.深度学习的训练流程2.1数学基础2.1.1梯度下降法基本原理数学表达步骤学习率α梯度下降的变体2.1.2神经网络与矩阵网络结构表示前向传播激活函数反向传播批处理卷积操作参数更新优化算法正则化初始化2.2激活函数Sigmoid函数:Tanh函数:ReLU函数(Rectified
- 二、大模型的能力(DataWhale大模型理论基础)
Y_fulture
大模型理论基础(DW组队学习)人工智能gpt-3nlp
大模型的能力一、概述本节主要是通过对GPT-3论文中的基准测试深入研究,从而获得关于GPT-3更深程度的认识我们应该知道,GPT-3的结果参差不齐:在某些任务上,比如语言建模,GPT-3大幅度超越了现有技术的最高水平;在其他任务上,GPT-3与训练有素,拥有大量标签数据的系统竞争时,却明显落后。造成上述现象的原因:GPT-3并未明确针对这些任务进行训练,它只是作为一个语言模型,被训练来预测下一个词
- 大模型学习 (Datawhale_Happy-LLM)笔记4: 预训练语言模型
lxltom
学习笔记语言模型人工智能bertgpt
大模型学习(Datawhale_Happy-LLM)笔记4:预训练语言模型一、概述本章按Encoder-Only、Encoder-Decoder、Decoder-Only的顺序来依次介绍Transformer时代的各个主流预训练模型,分别介绍三种核⼼的模型架构、每种主流模型选择的预训练任务及其独特优势,这也是目前所有主流LLM的模型基础。二、Encoder-onlyPLM代表:BERT及其优化版本
- 【Datawhale组队学习202506】YOLO-Master task02 YOLO系列发展线
来两个炸鸡腿
Datawhale组队学习学习YOLOpython深度学习
系列文章目录`文章目录系列文章目录前言V1-2015-JosephRedmonV2-2016-JosephRedmonV3-2018-JosephRedmonYOLO之父的退出V4-202004-Chien-YaoWangV5-20200609-Ultralytics公司V6-20220623-美团V7-2022-Chien-YaoWangV8-20230110-Ultralytics公司V9-2
- Datawhale YOLO Master 第1次笔记
weixin_44811994
YOLO笔记
课程链接https://github.com/datawhalechina/yolo-masterYOLO系列模型堪称算法界的《五年高考三年模拟》:代码比字典的释义还易懂:PyTorch版源码自带"防脱发"注释,连数据加载器都写着"这里可以加缓存哦~"训练自由度高过还原魔方:从640x640输入尺寸到Neck网络结构,改配置比换手机壳还方便教程比奶茶店的新品还多:GitHub星标项目能绕地球两圈,
- DataWhale-零基础网络爬虫技术(一)
我怎么又饿了呀
DatawhalePythonDataWhale网络
课程链接先给各位↓↓↓(点击即可食用.QAQDatawhale-学用AI,从此开始一、引言还是在笔记的开始,唠唠一些自己的故事十年前第一次接触网络,也可以说是第一次接触计算机的时候,那时候还是在中学阶段,那时候大家比较乐忠于玩QQ,刷一排各式各样的钻还有图标显得比较酷炫,我们班所有人都会用各种途径点亮五颜六色的钻,大家在下课吹牛的时候总会说我的途径更有效、我的价更低等等...所以那时候的年轻想法就
- DataWhale-零基础络网爬虫技术(二er数据的解析与提取)
我怎么又饿了呀
PythonDatawhale爬虫算法
课程链接先给各位↓↓↓(点击即可食用.QAQDatawhale-学用AI,从此开始一、数据的解析与提取数据提取的几种方式:re解析bs4解析xpath解析1.1正则表达式(ReuglarExperssion)RE是一种用于字符串匹配的规则描述方式。它通过特定的组合字符来定义字符串的模式,从而实现对字符串的搜索、匹配、替换等操作。Python也支持同样re的用法,需要引入模块importre。使用场
- 【Datawhale组队学习202506】YOLO-Master task01 导学课程
来两个炸鸡腿
Datawhale组队学习学习YOLO
系列文章目录task01导学课程文章目录系列文章目录前言一、计算机视觉与YOLO?二、YOLO好在哪2.1卓越性能2.2极易学习2.3模块化设计2.4开源社区活跃三、YOLOMaster教程内容介绍总结前言Datawhale是一个专注于AI与数据科学的开源组织,汇集了众多领域院校和知名企业的优秀学习者,聚合了一群有开源精神和探索精神的团队成员YOLO-Master本章学习资料:https://wv
- Datawhale组队学习 - 202505 - PyPOTS - Task01时序数据与PyPOTS
来两个炸鸡腿
学习python人工智能
系列文章目录Task01-时序数据与PyPOTS文章目录系列文章目录前言1时间序列数据1.1时间序列数据的类型1.2时间序列数据示例1.3时间序列的研究与应用方向1.3.1预测Forecasting1.3.2分类Classification1.3.3聚类Clustering1.3.4异常监测AnomalyDetection1.3.5时间序列生成Generation1.3.6插补Imputation
- 【Datawhale组队学习202506】零基础学爬虫 01 初始爬虫
来两个炸鸡腿
Datawhale组队学习学习爬虫python
系列文章目录01初始爬虫文章目录系列文章目录前言1爬虫和Python2爬虫的矛盾2.1爬虫与反爬2.2robots核心字段重要规则说明非标准扩展指令协议生效条件局限性验证工具2.3一个爬虫demo3Web请求与HTTP协议3.1一个web请求的全过程3.2判断页面源代码位置3.3HTTP协议HTTP请求HTTP响应3.4requests模块入门总结前言Datawhale是一个专注于AI与数据科学的
- Datawhale 2025年2月组队学习- 推荐系统教程FunRec #Task3
dxnb22
Datawhale学习笔记人工智能推荐算法
第二章基于向量的召回1.item2vec未完待续……2.youtubeDnn3.经典双塔模型
- Datawhale | 最新AI Agent万字综述分享!
双木的木
大模型专栏Transformer专栏深度学习拓展阅读人工智能transformer深度学习pythonchatgptpromptagent
本文来源公众号“Datawhale”,仅用于学术分享,侵权删,干货满满。原文链接:最新AIAgent万字综述分享!近日,支付宝百宝箱团队的技术负责人王月凡在Datawhale社区带来了AIAgent综述分享。从大语言模型的发展历程出发,全面分享了AIAgent现状,包括:AIAgent出现的原因、构成、核心技术、核心能力、应用场景,以及备受关注的场景落地难点。同时,在最后探讨了未来的人机交互与智能
- 全方位入门大模型应用开发,只需一招搞定:吴恩达系列课程中文教程实战指南!
AI小白熊
人工智能机器学习自然语言处理ai大模型程序员转行
随着生成式人工智能技术的迅速发展,大语言模型(LLM,LargeLanguageModel)成为了当下AI领域最炙手可热的赛道之一。如何快速、高效地掌握LLM的开发要领,成为众多开发者关注的热点。而由Datawhale团队打造的《面向开发者的大模型手册-LLMCookbook》项目,正好为有志于投身大模型开发的中文学习者提供了一套体系化、本地化的入门与实战宝典。本文将为你详细解析这个项目包含的各类
- Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
大语言模型
人工智能LLM大模型程序员AI大模型RAG知识库
引言在人工智能飞速发展的今天,大语言模型(LargeLanguageModels,LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部原理和训练过程并非易事,需要系统的学习和实践。为了帮助广大AI爱好者深入掌握大语言模型的精髓,国内最大的AI开源学习社区Datawhale推出了Happy-LLM项目。这个开源教程以
- LLM基础1_语言模型如何处理文本
激进小猪1002
语言模型人工智能自然语言处理
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn工具介绍tiktoken:OpenAI开发的专业"分词器"torch:Facebook开发的强力计算引擎,相当于超级计算器理解词嵌入:给词语画"肖像"传统方法:给每个词一个编号(就像学生学号)词嵌入:给每个词画一幅多维画像(就像用颜色、形状、纹理描述一幅画),但是计算机
- LLM基础2_语言模型如何文本编码
激进小猪1002
java服务器前端
基于GitHub项目:https://github.com/datawhalechina/llms-from-scratch-cn字节对编码(BPE)上一篇博文说到为什么GPT模型不需要[PAD]和[UNK]?GPT使用更先进的字节对编码(BPE),总能将词语拆分成已知子词为什么需要BPE?简单分词器的问题:遇到新词就卡住(如"Hello")BPE的解决方案:把陌生词拆成已知的小零件BPE如何工作
- 机器学习西瓜书笔记——机器学习基本术语,模型性能指标【一】
Code思铮
机器学习笔记人工智能
西瓜书第一,二章笔记datawhale吃瓜教程task1学习笔记第一章第一张主要介绍了一些机器学习研究内容和基本术语,以及发展现状。基本术语由于有些术语过于基础,在此不做赘述大家可以去读西瓜书。1、分类任务:若模型的预测值是离散的,如“好瓜”,“坏瓜”,这是分类任务。在二分类任务中有两个标签(label)一个是正类,一个是反类2、回归任务:若模型的预测值是连续的,如“西瓜的成熟度是0.99“那么这
- 给MCP加上RAG,工具准确率提升200%,起飞~
Datawhale
Datawhale分享作者:TiantianGan、QiyaoSun编辑:PaperAgent大型语言模型(LLMs)在有效利用越来越多的外部工具(如模型上下文协议(MCP)所定义的工具)方面存在困难,这是由于提示膨胀和选择复杂性造成的。因此引入了RAG-MCP,这是一个检索增强生成框架,通过卸载工具发现来克服这一挑战。论文地址:https://arxiv.org/pdf/2505.03275提示
- HttpClient 4.3与4.3版本以下版本比较
spjich
javahttpclient
网上利用java发送http请求的代码很多,一搜一大把,有的利用的是java.net.*下的HttpURLConnection,有的用httpclient,而且发送的代码也分门别类。今天我们主要来说的是利用httpclient发送请求。
httpclient又可分为
httpclient3.x
httpclient4.x到httpclient4.3以下
httpclient4.3
- Essential Studio Enterprise Edition 2015 v1新功能体验
Axiba
.net
概述:Essential Studio已全线升级至2015 v1版本了!新版本为JavaScript和ASP.NET MVC添加了新的文件资源管理器控件,还有其他一些控件功能升级,精彩不容错过,让我们一起来看看吧!
syncfusion公司是世界领先的Windows开发组件提供商,该公司正式对外发布Essential Studio Enterprise Edition 2015 v1版本。新版本
- [宇宙与天文]微波背景辐射值与地球温度
comsci
背景
宇宙这个庞大,无边无际的空间是否存在某种确定的,变化的温度呢?
如果宇宙微波背景辐射值是表示宇宙空间温度的参数之一,那么测量这些数值,并观测周围的恒星能量输出值,我们是否获得地球的长期气候变化的情况呢?
&nbs
- lvs-server
男人50
server
#!/bin/bash
#
# LVS script for VS/DR
#
#./etc/rc.d/init.d/functions
#
VIP=10.10.6.252
RIP1=10.10.6.101
RIP2=10.10.6.13
PORT=80
case $1 in
start)
/sbin/ifconfig eth2:0 $VIP broadca
- java的WebCollector爬虫框架
oloz
爬虫
WebCollector主页:
https://github.com/CrawlScript/WebCollector
下载:webcollector-版本号-bin.zip将解压后文件夹中的所有jar包添加到工程既可。
接下来看demo
package org.spider.myspider;
import cn.edu.hfut.dmic.webcollector.cra
- jQuery append 与 after 的区别
小猪猪08
1、after函数
定义和用法:
after() 方法在被选元素后插入指定的内容。
语法:
$(selector).after(content)
实例:
<html>
<head>
<script type="text/javascript" src="/jquery/jquery.js"></scr
- mysql知识充电
香水浓
mysql
索引
索引是在存储引擎中实现的,因此每种存储引擎的索引都不一定完全相同,并且每种存储引擎也不一定支持所有索引类型。
根据存储引擎定义每个表的最大索引数和最大索引长度。所有存储引擎支持每个表至少16个索引,总索引长度至少为256字节。
大多数存储引擎有更高的限制。MYSQL中索引的存储类型有两种:BTREE和HASH,具体和表的存储引擎相关;
MYISAM和InnoDB存储引擎
- 我的架构经验系列文章索引
agevs
架构
下面是一些个人架构上的总结,本来想只在公司内部进行共享的,因此内容写的口语化一点,也没什么图示,所有内容没有查任何资料是脑子里面的东西吐出来的因此可能会不准确不全,希望抛砖引玉,大家互相讨论。
要注意,我这些文章是一个总体的架构经验不针对具体的语言和平台,因此也不一定是适用所有的语言和平台的。
(内容是前几天写的,现附上索引)
前端架构 http://www.
- Android so lib库远程http下载和动态注册
aijuans
andorid
一、背景
在开发Android应用程序的实现,有时候需要引入第三方so lib库,但第三方so库比较大,例如开源第三方播放组件ffmpeg库, 如果直接打包的apk包里面, 整个应用程序会大很多.经过查阅资料和实验,发现通过远程下载so文件,然后再动态注册so文件时可行的。主要需要解决下载so文件存放位置以及文件读写权限问题。
二、主要
- linux中svn配置出错 conf/svnserve.conf:12: Option expected 解决方法
baalwolf
option
在客户端访问subversion版本库时出现这个错误:
svnserve.conf:12: Option expected
为什么会出现这个错误呢,就是因为subversion读取配置文件svnserve.conf时,无法识别有前置空格的配置文件,如### This file controls the configuration of the svnserve daemon, if you##
- MongoDB的连接池和连接管理
BigCat2013
mongodb
在关系型数据库中,我们总是需要关闭使用的数据库连接,不然大量的创建连接会导致资源的浪费甚至于数据库宕机。这篇文章主要想解释一下mongoDB的连接池以及连接管理机制,如果正对此有疑惑的朋友可以看一下。
通常我们习惯于new 一个connection并且通常在finally语句中调用connection的close()方法将其关闭。正巧,mongoDB中当我们new一个Mongo的时候,会发现它也
- AngularJS使用Socket.IO
bijian1013
JavaScriptAngularJSSocket.IO
目前,web应用普遍被要求是实时web应用,即服务端的数据更新之后,应用能立即更新。以前使用的技术(例如polling)存在一些局限性,而且有时我们需要在客户端打开一个socket,然后进行通信。
Socket.IO(http://socket.io/)是一个非常优秀的库,它可以帮你实
- [Maven学习笔记四]Maven依赖特性
bit1129
maven
三个模块
为了说明问题,以用户登陆小web应用为例。通常一个web应用分为三个模块,模型和数据持久化层user-core, 业务逻辑层user-service以及web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和user-service
依赖作用范围
Maven的dependency定义
- 【Akka一】Akka入门
bit1129
akka
什么是Akka
Message-Driven Runtime is the Foundation to Reactive Applications
In Akka, your business logic is driven through message-based communication patterns that are independent of physical locatio
- zabbix_api之perl语言写法
ronin47
zabbix_api之perl
zabbix_api网上比较多的写法是python或curl。上次我用java--http://bossr.iteye.com/blog/2195679,这次用perl。for example: #!/usr/bin/perl
use 5.010 ;
use strict ;
use warnings ;
use JSON :: RPC :: Client ;
use
- 比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
brotherlamp
linux运维工程师linux运维工程师教程linux运维工程师视频linux运维工程师资料linux运维工程师自学
比优衣库跟牛掰的视频流出了,兄弟连Linux运维工程师课堂实录,更加刺激,更加实在!
-----------------------------------------------------
兄弟连Linux运维工程师课堂实录-计算机基础-1-课程体系介绍1
链接:http://pan.baidu.com/s/1i3GQtGL 密码:bl65
兄弟连Lin
- bitmap求哈密顿距离-给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(
bylijinnan
java
import java.util.Random;
/**
* 题目:
* 给定N(1<=N<=100000)个五维的点A(x1,x2,x3,x4,x5),求两个点X(x1,x2,x3,x4,x5)和Y(y1,y2,y3,y4,y5),
* 使得他们的哈密顿距离(d=|x1-y1| + |x2-y2| + |x3-y3| + |x4-y4| + |x5-y5|)最大
- map的三种遍历方法
chicony
map
package com.test;
import java.util.Collection;
import java.util.HashMap;
import java.util.Iterator;
import java.util.Map;
import java.util.Set;
public class TestMap {
public static v
- Linux安装mysql的一些坑
chenchao051
linux
1、mysql不建议在root用户下运行
2、出现服务启动不了,111错误,注意要用chown来赋予权限, 我在root用户下装的mysql,我就把usr/share/mysql/mysql.server复制到/etc/init.d/mysqld, (同时把my-huge.cnf复制/etc/my.cnf)
chown -R cc /etc/init.d/mysql
- Sublime Text 3 配置
daizj
配置Sublime Text
Sublime Text 3 配置解释(默认){// 设置主题文件“color_scheme”: “Packages/Color Scheme – Default/Monokai.tmTheme”,// 设置字体和大小“font_face”: “Consolas”,“font_size”: 12,// 字体选项:no_bold不显示粗体字,no_italic不显示斜体字,no_antialias和
- MySQL server has gone away 问题的解决方法
dcj3sjt126com
SQL Server
MySQL server has gone away 问题解决方法,需要的朋友可以参考下。
应用程序(比如PHP)长时间的执行批量的MYSQL语句。执行一个SQL,但SQL语句过大或者语句中含有BLOB或者longblob字段。比如,图片数据的处理。都容易引起MySQL server has gone away。 今天遇到类似的情景,MySQL只是冷冷的说:MySQL server h
- javascript/dom:固定居中效果
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&
- 使用 Spring 2.5 注释驱动的 IoC 功能
e200702084
springbean配置管理IOCOffice
使用 Spring 2.5 注释驱动的 IoC 功能
developerWorks
文档选项
将打印机的版面设置成横向打印模式
打印本页
将此页作为电子邮件发送
将此页作为电子邮件发送
级别: 初级
陈 雄华 (
[email protected]), 技术总监, 宝宝淘网络科技有限公司
2008 年 2 月 28 日
&nb
- MongoDB常用操作命令
geeksun
mongodb
1. 基本操作
db.AddUser(username,password) 添加用户
db.auth(usrename,password) 设置数据库连接验证
db.cloneDataBase(fromhost)
- php写守护进程(Daemon)
hongtoushizi
PHP
转载自: http://blog.csdn.net/tengzhaorong/article/details/9764655
守护进程(Daemon)是运行在后台的一种特殊进程。它独立于控制终端并且周期性地执行某种任务或等待处理某些发生的事件。守护进程是一种很有用的进程。php也可以实现守护进程的功能。
1、基本概念
&nbs
- spring整合mybatis,关于注入Dao对象出错问题
jonsvien
DAOspringbeanmybatisprototype
今天在公司测试功能时发现一问题:
先进行代码说明:
1,controller配置了Scope="prototype"(表明每一次请求都是原子型)
@resource/@autowired service对象都可以(两种注解都可以)。
2,service 配置了Scope="prototype"(表明每一次请求都是原子型)
- 对象关系行为模式之标识映射
home198979
PHP架构企业应用对象关系标识映射
HELLO!架构
一、概念
identity Map:通过在映射中保存每个已经加载的对象,确保每个对象只加载一次,当要访问对象的时候,通过映射来查找它们。其实在数据源架构模式之数据映射器代码中有提及到标识映射,Mapper类的getFromMap方法就是实现标识映射的实现。
二、为什么要使用标识映射?
在数据源架构模式之数据映射器中
//c
- Linux下hosts文件详解
pda158
linux
1、主机名: 无论在局域网还是INTERNET上,每台主机都有一个IP地址,是为了区分此台主机和彼台主机,也就是说IP地址就是主机的门牌号。 公网:IP地址不方便记忆,所以又有了域名。域名只是在公网(INtERNET)中存在,每个域名都对应一个IP地址,但一个IP地址可有对应多个域名。 局域网:每台机器都有一个主机名,用于主机与主机之间的便于区分,就可以为每台机器设置主机
- nginx配置文件粗解
spjich
javanginx
#运行用户#user nobody;#启动进程,通常设置成和cpu的数量相等worker_processes 2;#全局错误日志及PID文件#error_log logs/error.log;#error_log logs/error.log notice;#error_log logs/error.log inf
- 数学函数
w54653520
java
public
class
S {
// 传入两个整数,进行比较,返回两个数中的最大值的方法。
public
int
get(
int
num1,
int
nu