全球DeepFake攻防挑战赛&DataWhale AI 夏令营——图像赛道

全球DeepFake攻防挑战赛&DataWhale AI 夏令营——图像赛道

赛题背景

随着人工智能技术的迅猛发展,深度伪造技术(Deepfake)正成为数字世界中的一把双刃剑。这项技术不仅为创意内容的生成提供了新的可能性,同时也对数字安全构成了前所未有的挑战。Deepfake技术可以通过人工智能算法生成高度逼真的图像、视频和音频内容,这些内容看起来与真实的毫无二致。然而,这也意味着虚假信息、欺诈行为和隐私侵害等问题变得更加严重和复杂。

Deepfake是一种使用人工智能技术生成的伪造媒体,特别是视频和音频,它们看起来或听起来非常真实,但实际上是由计算机生成的。这种技术通常涉及到深度学习算法,特别是生成对抗网络(GANs),它们能够学习真实数据的特征,并生成新的、逼真的数据。

Deepfake技术虽然在多个领域展现出其创新潜力,但其滥用也带来了一系列严重的危害。在政治领域,Deepfake可能被用来制造假新闻或操纵舆论,影响选举结果和政治稳定。经济上,它可能破坏企业形象,引发市场恐慌,甚至操纵股市。法律体系也面临挑战,因为伪造的证据可能误导司法判断。此外,深度伪造技术还可能加剧身份盗窃的风险,成为恐怖分子的新工具,煽动暴力和社会动荡,威胁国家安全。

深度伪造技术通常可以分为四个主流研究方向:

  • 面部交换专注于在两个人的图像之间执行身份交换;
  • 面部重演强调转移源运动和姿态;
  • 说话面部生成专注于在角色生成中实现口型与文本内容的自然匹配;
  • 面部属性编辑旨在修改目标图像的特定面部属性;

全球DeepFake攻防挑战赛&DataWhale AI 夏令营——图像赛道_第1张图片
深度学习与Deepfake

深度学习是一种强大的机器学习技术,它通过模拟人脑处理信息的方式,使计算机能够从大量数据中自动学习和识别模式。深度学习模型,尤其是卷积神经网络(CNN),能够识别图像和视频中的复杂特征。在Deepfake检测中,模型可以学习识别伪造内容中可能存在的微妙异常。

为了训练有效的Deepfake检测模型,需要构建包含各种Deepfake和真实样本的数据集(本次比赛的数据集就是按照这种方式进行组织)。深度学习模型通过这些数据集学习区分真假内容。

全球DeepFake攻防挑战赛&DataWhale AI 夏令营——图像赛道_第2张图片

赛题任务

在这个赛道中,比赛任务是判断一张人脸图像是否为Deepfake图像,并输出其为Deepfake图像的概率评分。参赛者需要开发和优化检测模型,以应对多样化的Deepfake生成技术和复杂的应用场景,从而提升Deepfake图像检测的准确性和鲁棒性。

赛题数据集

首先发布了训练集和验证集,下载链接为:
http://zoloz-open.oss-cn-hangzhou.aliyuncs.com/waitan2024_deepfake_challenge%2F_%E8%B5%9B%E9%81%931%E5%AF%B9%E5%A4%96%E5%8F%91%E5%B8%83%E6%95%B0%E6%8D%AE%E9%9B%86%2Fphase1.tar.gz?Expires=1726603663&OSSAccessKeyId=LTAI5tAfcZDV5eCa1BBEJL9R&Signature=wFrzBHn5bhULqWzlZP7Z74p1g9c%3D

可以使用command命令进行下载

curl 'http://zoloz-open.oss-cn-hangzhou.aliyuncs.com/waitan2024_deepfake_challenge%2F_%E8%B5%9B%E9%81%931%E5%AF%B9%E5%A4%96%E5%8F%91%E5%B8%83%E6%95%B0%E6%8D%AE%E9%9B%86%2Fphase1.tar.gz?Expires=1726603663&OSSAccessKeyId=LTAI5tAfcZDV5eCa1BBEJL9R&Signature=wFrzBHn5bhULqWzlZP7Z74p1g9c%3D' -o multiFFDI-phase1.tar.gz

训练集样例:

img_name,target
3381ccbc4df9e7778b720d53a2987014.jpg,1
63fee8a89581307c0b4fd05a48e0ff79.jpg,0
7eb4553a58ab5a05ba59b40725c903fd.jpg,0
…

验证集样例;

img_name,target
cd0e3907b3312f6046b98187fc25f9c7.jpg,1
aa92be19d0adf91a641301cfcce71e8a.jpg,0
5413a0b706d33ed0208e2e4e2cacaa06.jpg,0
…

提交的预测文件:

img_name,y_pred
cd0e3907b3312f6046b98187fc25f9c7.jpg,1
aa92be19d0adf91a641301cfcce71e8a.jpg,0.5
5413a0b706d33ed0208e2e4e2cacaa06.jpg,0.5
…

Baseline

Datawhale提供的baseline使用了ResNet,ResNet是一种残差网络,由于网络的加深会造成梯度爆炸和梯度消失的问题,因此何恺明了新的架构ResNet。

全球DeepFake攻防挑战赛&DataWhale AI 夏令营——图像赛道_第3张图片

对kaggle中的baseline进行拆分,拆分为model、dataset和run三个部分

  1. 数据集的加载

    from torch.utils.data.dataset import Dataset
    from PIL import Image
    import torch
    import numpy as np
    import pandas as pd
    class FFDIDataset(Dataset):
        def __init__(self, img_path, img_label, transform=None):
            self.img_path = img_path
            self.img_label = img_label
    
            if transform is not None:
                self.transform = transform
            else:
                self.transform = None
    
        def __getitem__(self, index):
            img = Image.open(self.img_path[index]).convert('RGB')
    
            if self.transform is not None:
                img = self.transform(img)
    
            return img, torch.from_numpy(np.array(self.img_label[index]))
    
        def __len__(self):
            return len(self.img_path)
    
    def read_labels():#此处注意path修改
        train_label = pd.read_csv("phase1/trainset_label.txt")
        val_label = pd.read_csv("phase1/valset_label.txt")
        train_label['path'] = "phase1/trainset/" + train_label['img_name']
        val_label['path'] = "phase1/valset/" + val_label['img_name']
    
        return train_label, val_label
    
  2. 模型架构

    import timm
    model = timm.create_model('resnet18', pretrained=True, num_classes=2)#baseline使用resnet,同时加载预训练模型,分类为2类
    
  3. 模型的训练和验证

    import torch
    
    import dataset
    
    torch.manual_seed(0)
    torch.backends.cudnn.deterministic = False
    torch.backends.cudnn.benchmark = True
    
    import torchvision.models as models
    

你可能感兴趣的:(人工智能,deep,learning)