- YOLOv4 介绍及其模型优化方法
1、YOLOv4介绍2020年4月,YOLOv4在悄无声息中重磅发布,在目标检测领域引起广泛的讨论。在YOLO系列的原作者JosephRedmon宣布退出CV领域后,表明官方不再更新YOLOv3。但在过去的两年中,AlexeyAB继承了YOLO系列的思想和理念,在YOLOv3的基础上不断进行改进和开发,于今年4月发布YOLOv4,并得到了原作者JosephRedmon的承认。YOLOv4可以使用传
- 2020-10-30
Victor Zhong
AI框架人工智能深度学习机器学习
极片缺陷检测模型验证报告:1:数据准备训练集:326张验证集:81张2:模型准备模型:yolov33:训练参数设置epochs:4603batch_size:8device:RTX2080Ticfg:yolov3-spp-jp4:验证结果5:检测结果部分检测结果图,全部结果图见文件夹result:6:结果分析a.训练数据中,某一类缺陷标注数量相对较少,影响检测该类的目标;可以通过数据增强的方法或增
- 深度学习目标检测之YOLOv3实战(二)训练自己的图像数据
郎郎不会飞
深度学习目标识别python深度学习
深度学习目标检测之YOLOv3实战(二)训练自己的图像数据数据集准备数据集预处理原demo修改数据集训练目标检测补充二零二零年的大年初一,给大家拜个年,祝大家鼠年吉祥,万事如意,趁着喜气,把Yolov3训练自己的数据过程,记录一下,共勉共进。同样,无人机搭载山狗拍摄的视频,目标检测的种类是模型tank和airplane,部分效果图镇贴:数据集准备首先需要将自己的数据集准备好,不同场景下的目标数据尽
- 目标检测——YOLO11算法解读
lishanlu136
#目标检测目标检测YOLO11YOLO系列算法解读
作者:Ultralytics公司代码:https://github.com/ultralytics/ultralyticsYOLO系列算法解读:YOLOv1通俗易懂版解读、SSD算法解读、YOLOv2算法解读、YOLOv3算法解读、YOLOv4算法解读、YOLOv5算法解读、YOLOR算法解读、YOLOX算法解读、YOLOv6算法解读、YOLOv7算法解读、
- YOLOv4 正负样本划分详解
要努力啊啊啊
计算机视觉YOLO目标检测深度学习计算机视觉目标跟踪
✅YOLOv4正负样本划分详解一、前言在目标检测中,正负样本划分是训练过程中的关键环节,它决定了哪些预测框参与损失计算,从而影响模型的学习效果。YOLOv4在YOLOv3的基础上进行了改进,包括:使用CSPDarknet53主干网络;引入PANet特征融合结构;支持Mosaic数据增强;使用CIoULoss和DIoU-NMS;但在正样本划分逻辑上,YOLOv4保持了与YOLOv3类似的设计方式,并
- YOLO的作者们
小远披荆斩棘
YOLOv8v9v10等实验与论文总结YOLO
YOLO之父JesephRedmon,他创建了yolov1、yolov2、yolov3三个版本,但是在2020年2月份却宣布退出CV学术界、停止一切关于计算机视觉的研究、原因是自己的开源算法已经用在军事和隐私问题上,这对他的道德造成了巨大的考验,他拒绝AI算法用于军事和隐私窥探。而在这2个月之后,另一位曾经参与YOLO项目维护的大神AlexeyBochkovskiy,在arXiv上提交了YOLOv
- YOLOv3 正负样本划分详解
要努力啊啊啊
计算机视觉YOLO目标检测深度学习计算机视觉目标跟踪
✅YOLOv3正负样本划分详解一、前言在目标检测任务中,正负样本的划分是训练过程中的关键环节。它决定了哪些预测框参与位置回归、分类损失和置信度损失。YOLOv3在YOLOv2的基础上引入了多尺度预测和更精细的AnchorBoxes匹配策略,使得正样本的选择更加合理,提高了模型的召回率和定位精度。本文将基于以下来源进行解析:YOLOv3:AnIncrementalImprovement(论文原文)A
- YOLOv4 改进点详解
要努力啊啊啊
计算机视觉YOLO目标检测计算机视觉算法
✅YOLOv4改进点详解一、前言YOLOv4是目标检测领域的一次重大升级,由AlexeyBochkovskiy等人在论文《YOLOv4:OptimalSpeedandAccuracyofObjectDetection》中提出。与YOLOv3相比,YOLOv4引入了多个结构优化和训练策略改进,在保持实时性的同时进一步提升了模型的精度和鲁棒性。本文将严格按照以下来源进行说明:✅论文原文:YOLOv4:
- 算法在嵌入式端的部署与优化
早日退休!!!
硬件算法嵌入式硬件
算法在嵌入式端的部署与优化前言理论1.参考资源2.其他1.将深度学习模型移植到嵌入式端时,提高推理速度的方法2.深度学习模型移植到嵌入式端的主要流程3.假设将已经训练好的目标检测模型(比如YOLOv3)移植到树莓派4B这样一款嵌入式设备上,并且需要保证推理速度达到实时。具体流程如下4.在树莓派上使用ncnn推理引擎,可以采取以下措施提高推理速度5.先进行模型压缩再用推理模型部署是一种常见的深度学习
- YOLOv3目标检测实战
宁安我
YOLO目标检测人工智能
YOLOv3目标检测实战:从理论到代码实现目录YOLOv3目标检测实战:从理论到代码实现1.引言2.YOLOv3的核心原理2.1网络结构2.2锚框(AnchorBoxes)2.3损失函数2.4预测流程3.案例:使用YOLOv3进行目标检测3.1数据集准备3.2模型定义3.2.1Darknet-53主干网络3.2.2YOLOv3检测头3.3训练与优化3.3.1损失函数3.3.2训练脚本3.4模型推理
- # YOLOv3:基于 PyTorch 的目标检测模型实现
www_pp_
YOLOpytorch目标检测
YOLOv3:基于PyTorch的目标检测模型实现引言YOLOv3(YouOnlyLookOnce)是一种流行的单阶段目标检测算法,它能够直接在输入图像上预测边界框和类别概率。YOLOv3的优势在于其高效性和准确性,使其在实时目标检测任务中表现出色。本文将详细介绍如何使用PyTorch实现YOLOv3模型,并提供完整的代码实现。1.YOLOv3简介YOLOv3是YOLO系列算法的第三个版本,它在前
- YOLOv3 目标检测算法深度解析
mozun2020
DL1:深度学习YOLO目标检测算法计算机视觉人工智能目标识别
YOLOv3目标检测算法深度解析一、算法原理与核心创新1.1算法设计哲学YOLOv3(YouOnlyLookOnceversion3)作为YOLO系列的第三代算法,延续了单阶段检测范式,通过端到端的回归策略实现实时目标检测。其核心设计目标是在保持检测速度优势的同时,显著提升多尺度目标检测能力,尤其针对小目标检测和复杂场景优化。1.2关键技术创新点1.2.1Darknet-53骨干网络残差连接:引入
- **深度学习之Keras-DIOU-YOLOv3: 更精确的目标检测利器**
许煦津
深度学习之Keras-DIOU-YOLOv3:更精确的目标检测利器去发现同类优质开源项目:https://gitcode.com/在这个数字化时代,目标检测是计算机视觉领域的一个重要组成部分,广泛应用于自动驾驶、视频监控、图像理解等多个场景。是一个基于Keras实现的改进版YOLOv3模型,它引入了DIOU(Distance-Intersection-over-Union)损失函数,旨在提高目标定
- 探秘PyTorch_YOLOv3:高效目标检测的利器
高慈鹃Faye
探秘PyTorch_YOLOv3:高效目标检测的利器去发现同类优质开源项目:https://gitcode.com/项目简介是一个基于PyTorch实现的目标检测框架,它采用了YOLOv3算法,该算法由JosephRedmon等人在2018年提出,以其实时性、高精度和广泛的适应性而备受关注。该项目致力于提供一个简单易用且高效的YoloV3实现,让用户能够轻松地进行目标检测任务。技术分析YOLOv3
- 机器学习、图像识别、视觉识别框架的对比表:
芯知社区
机器学习人工智能
以下是机器学习、图像识别、视觉识别框架的对比表:特性TensorFlowPyTorchOpenCVGoogleCloudVisionAPIYOLOv3Halcon开发语言Python,C++等Python,C++等C++,Python,Java等通过REST和RPCAPI调用Python,C++等C,C++,C#,VisualBasic等应用场景机器学习、深度学习、图像处理等机器学习、深度学习、计
- YOLO系列模型简介
西北风^_^
大模型YOLO
YOLO(YouOnlyLookOnce)系列模型是用于目标检测的一组深度学习模型,以其快速且高效的特点著称。该系列模型由JosephRedmon等人开发,自2016年的YOLOv1发布以来,已经经历了多个版本的迭代和发展,包括YOLOv2、YOLOv3、YOLOv4、YOLOv5、YOLOv6、YOLOv7及最新的YOLOv8等。每个版本都在前一代的基础上进行了改进和优化,提升了模型的速度和准确
- 旋转目标检测:FCOS: Fully Convolutional One-Stage Object Detection【方法解读】
沉浸式AI
《AI与SLAM论文解析》目标检测人工智能计算机视觉论文解读旋转目标检测
FCOS:全卷积单阶段目标检测我们提出了一种全卷积单阶段目标检测器(FCOS),以逐像素预测的方式解决目标检测问题,类似于语义分割。目前几乎所有的最先进目标检测器,如RetinaNet、SSD、YOLOv3和FasterR-CNN,都依赖于预定义的锚框。相反,我们提出的FCOS检测器是无锚框的,同时也是无候选区域的。通过消除预定义的锚框集,FCOS完全避免了与锚框相关的复杂计算,如训练期间计算重叠
- 经典的YOLOv3和YOLOV5算法详解及代码复现
清风AI
深度学习算法详解及代码复现YOLO算法yolov3yolov5计算机视觉人工智能
YOLO的基本原理YOLO(YouOnlyLookOnce)是一种革命性的目标检测算法,它巧妙地将复杂的检测问题转化为回归问题。这种方法的核心在于将输入图像划分为S×S网格,每个网格负责预测其内部的物体位置和类别。具体来说,每个网格需要预测(B×5+C)个值,其中B代表边界框数量,C为类别数。最终,模型输出一个S×S×(B×5+C)大小的张量。YOLO的一个关键创新是使用非极大值抑制(NMS)算法
- YOLOv3 推理与后处理模块源码解析
LIUDAN'S WORLD
YOLO系列教程YOLO人工智能目标检测
一、YOLOv3模型推理过程源码解析推理过程指的是将输入图像送入训练好的YOLOv3模型,得到模型输出的预测结果。1.输入图像预处理(Preprocessing)在将图像送入模型之前,通常需要进行一系列的预处理操作,以使其符合模型的输入要求。常见的预处理步骤包括:图像缩放(Resizing):将输入图像缩放到模型训练时所使用的尺寸,例如常见的416x416或608x608。这通常涉及到保持图像的宽
- 基于深度学习与YOLOv的人脸表情识别方法研究
源码空间站TH
深度学习人工智能
内容概要:文章探讨了基于深度学习的人脸表情识别技术,重点介绍了YOLOv3算法的应用。通过结合YOLOv3的实时检测能力和传统的分类器方法,实现了一个高效的人脸表情识别系统。文中详细讨论了YOLOv3的工作原理,数据预处理方法,训练与测试流程,并展示了系统的应用场景,如图片识别、视频识别和实时识别等。适合人群:计算机视觉研究人员、深度学习爱好者和相关领域的工程师。使用场景及目标:适用于人机交互、在
- YOLOv3预训练权重——开启目标检测的快捷之门
毕昕露Lionel
YOLOv3预训练权重——开启目标检测的快捷之门【下载地址】yolov3预训练权重资源yolov3预训练权重资源欢迎来到YOLOv3预训练权重的下载页面!本仓库提供YOLOv3模型的预训练权重文件,旨在帮助开发者和研究人员快速启动目标检测项目项目地址:https://gitcode.com/open-source-toolkit/a7417在追求高效、准确的目标检测之旅中,YOLOv3预训练权重无
- YOLOv3实践教程:使用预训练模型进行目标检测
LIUDAN'S WORLD
YOLO系列教程YOLO深度学习计算机视觉人工智能
目录简介环境准备获取预训练模型图像目标检测视频目标检测模型性能优化常见问题解答进阶学习路径简介YOLOv3(YouOnlyLookOnceversion3)是一种高效的实时目标检测算法,由JosephRedmon和AliFarhadi于2018年提出。与传统的目标检测方法相比,YOLO将目标检测视为单一的回归问题,直接从完整图像预测边界框及其类别概率,使其成为速度和准确性之间平衡的优秀选择。本教程
- 复现deep_sort_yolov3--demo.py
聿默
目标跟踪tensorflowkeras
0.环境opencv-python==4.1.0.25/4.1.2.30Pillowscikit-learn==0.19.2numpy==1.15.0keras==2.2.4tensorflow==1.12.0imutils1.修改1.1在deep_sort添加videocaptureasync.pyimportthreadingimportcv2classVideoCaptureAsync:de
- 探索MobileNet-Yolo:轻量级的移动端目标检测神器
施刚爽
探索MobileNet-Yolo:轻量级的移动端目标检测神器MobileNet-YoloMobileNetV2-YoloV3-Nano:0.5BFlops3MBHUAWEIP40:6ms/img,YoloFace-500k:0.1Bflops420KB:fire::fire::fire:项目地址:https://gitcode.com/gh_mirrors/mo/MobileNet-Yolo项目简
- PyTorch-YOLOv3 安装和配置指南
劳蕾令
PyTorch-YOLOv3安装和配置指南PyTorch-YOLOv3eriklindernoren/PyTorch-YOLOv3:是一个基于PyTorch实现的YOLOv3目标检测模型。适合用于需要实现实时目标检测的应用。特点是可以提供PyTorch框架下的YOLOv3模型实现,支持自定义模型和数据处理流程。项目地址:https://gitcode.com/gh_mirrors/py/PyTor
- YOLO_v3_PyTorch: 基于PyTorch的YOLOv3实现指南
吕曦耘George
YOLO_v3_PyTorch:基于PyTorch的YOLOv3实现指南YOLO_v3_PyTorch使用PyTorch实现基于YOLOv3的目标检测器项目地址:https://gitcode.com/gh_mirrors/yo/YOLO_v3_PyTorch项目介绍YOLO_v3_PyTorch是一个简洁的PyTorch版本YOLOv3框架,旨在提供对YOLOv3目标检测算法的支持,包括训练、推
- 【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解
牙牙要健康
目标检测深度学习目标检测pytorch
【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解文章目录【目标检测】【深度学习】【Pytorch版本】YOLOV3模型算法详解前言YOLOV3的模型结构YOLOV3模型的基本执行流程YOLOV3模型的网络参数YOLOV3的核心思想前向传播阶段反向传播阶段总结前言YOLOV3是由华盛顿大学的JosephRedmon等人在《YOLOv3:AnIncrementalImprovem
- yolo模型学习笔记——4——yolov4相比与yolov3的优点
Summit-
YOLO学习笔记
1.网络结构和架构的改变(1)yolov3使用darknet-53的主干网络,该网络基于残差结构(2)yolov4使用CSPDarknet53,增强版darknet-53,具有更高的计算效率和更好的特征提取能2.优化技术(1)yolov3使用了基础的数据增强技术(如翻转、裁剪、亮度调整等),并且使用了自适应锚框来匹配目标的大小(2)yolov41.Mosaic数据增强这是一种新的数据增强方法,通过
- 【ROS】Darknet_ROS YOLO V3 部署自训练模型 目标检测
Abaaba+
YOLO目标检测人工智能
【ROS】Darknet_ROSYOLOV3目标检测前言整体思路安装依赖项检查克隆源码编译与构建准备文件1.权重文件(xf_real.weights)2.配置文件(xf_real.cfg)3.模型配置文件(xf_real.yaml)修改配置ros.yamldarknet_ros.launch使用与测试前言本文适用于已掌握YOLOv3和Darknet基础知识的读者,旨在帮助大家快速在ROS上部署自定
- YOLO系列模型从v1到v10的演进
剑走偏锋o.O
YOLO目标跟踪人工智能
文章目录引言YOLOv1:开创单阶段目标检测先河发布时间与背景核心创新模型架构训练策略与优化YOLOv2:提升精度与速度的平衡发布时间与背景核心创新模型架构训练策略与优化YOLOv3:多尺度检测与残差连接发布时间与背景核心创新模型架构训练策略与优化YOLOv4:引入注意力机制与优化模块发布时间与背景核心创新模型架构训练策略与优化YOLOv5:工程优化与实际应用的结合发布时间与背景核心创新模型架构训
- 分享100个最新免费的高匿HTTP代理IP
mcj8089
代理IP代理服务器匿名代理免费代理IP最新代理IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
120.198.243.130:80,中国/广东省
58.251.78.71:8088,中国/广东省
183.207.228.22:83,中国/
- mysql高级特性之数据分区
annan211
java数据结构mongodb分区mysql
mysql高级特性
1 以存储引擎的角度分析,分区表和物理表没有区别。是按照一定的规则将数据分别存储的逻辑设计。器底层是由多个物理字表组成。
2 分区的原理
分区表由多个相关的底层表实现,这些底层表也是由句柄对象表示,所以我们可以直接访问各个分区。存储引擎管理分区的各个底层
表和管理普通表一样(所有底层表都必须使用相同的存储引擎),分区表的索引只是
- JS采用正则表达式简单获取URL地址栏参数
chiangfai
js地址栏参数获取
GetUrlParam:function GetUrlParam(param){
var reg = new RegExp("(^|&)"+ param +"=([^&]*)(&|$)");
var r = window.location.search.substr(1).match(reg);
if(r!=null
- 怎样将数据表拷贝到powerdesigner (本地数据库表)
Array_06
powerDesigner
==================================================
1、打开PowerDesigner12,在菜单中按照如下方式进行操作
file->Reverse Engineer->DataBase
点击后,弹出 New Physical Data Model 的对话框
2、在General选项卡中
Model name:模板名字,自
- logbackのhelloworld
飞翔的马甲
日志logback
一、概述
1.日志是啥?
当我是个逗比的时候我是这么理解的:log.debug()代替了system.out.print();
当我项目工作时,以为是一堆得.log文件。
这两天项目发布新版本,比较轻松,决定好好地研究下日志以及logback。
传送门1:日志的作用与方法:
http://www.infoq.com/cn/articles/why-and-how-log
上面的作
- 新浪微博爬虫模拟登陆
随意而生
新浪微博
转载自:http://hi.baidu.com/erliang20088/item/251db4b040b8ce58ba0e1235
近来由于毕设需要,重新修改了新浪微博爬虫废了不少劲,希望下边的总结能够帮助后来的同学们。
现行版的模拟登陆与以前相比,最大的改动在于cookie获取时候的模拟url的请求
- synchronized
香水浓
javathread
Java语言的关键字,可用来给对象和方法或者代码块加锁,当它锁定一个方法或者一个代码块的时候,同一时刻最多只有一个线程执行这段代码。当两个并发线程访问同一个对象object中的这个加锁同步代码块时,一个时间内只能有一个线程得到执行。另一个线程必须等待当前线程执行完这个代码块以后才能执行该代码块。然而,当一个线程访问object的一个加锁代码块时,另一个线程仍然
- maven 简单实用教程
AdyZhang
maven
1. Maven介绍 1.1. 简介 java编写的用于构建系统的自动化工具。目前版本是2.0.9,注意maven2和maven1有很大区别,阅读第三方文档时需要区分版本。 1.2. Maven资源 见官方网站;The 5 minute test,官方简易入门文档;Getting Started Tutorial,官方入门文档;Build Coo
- Android 通过 intent传值获得null
aijuans
android
我在通过intent 获得传递兑现过的时候报错,空指针,我是getMap方法进行传值,代码如下 1 2 3 4 5 6 7 8 9
public
void
getMap(View view){
Intent i =
- apache 做代理 报如下错误:The proxy server received an invalid response from an upstream
baalwolf
response
网站配置是apache+tomcat,tomcat没有报错,apache报错是:
The proxy server received an invalid response from an upstream server. The proxy server could not handle the request GET /. Reason: Error reading fr
- Tomcat6 内存和线程配置
BigBird2012
tomcat6
1、修改启动时内存参数、并指定JVM时区 (在windows server 2008 下时间少了8个小时)
在Tomcat上运行j2ee项目代码时,经常会出现内存溢出的情况,解决办法是在系统参数中增加系统参数:
window下, 在catalina.bat最前面
set JAVA_OPTS=-XX:PermSize=64M -XX:MaxPermSize=128m -Xms5
- Karam与TDD
bijian1013
KaramTDD
一.TDD
测试驱动开发(Test-Driven Development,TDD)是一种敏捷(AGILE)开发方法论,它把开发流程倒转了过来,在进行代码实现之前,首先保证编写测试用例,从而用测试来驱动开发(而不是把测试作为一项验证工具来使用)。
TDD的原则很简单:
a.只有当某个
- [Zookeeper学习笔记之七]Zookeeper源代码分析之Zookeeper.States
bit1129
zookeeper
public enum States {
CONNECTING, //Zookeeper服务器不可用,客户端处于尝试链接状态
ASSOCIATING, //???
CONNECTED, //链接建立,可以与Zookeeper服务器正常通信
CONNECTEDREADONLY, //处于只读状态的链接状态,只读模式可以在
- 【Scala十四】Scala核心八:闭包
bit1129
scala
Free variable A free variable of an expression is a variable that’s used inside the expression but not defined inside the expression. For instance, in the function literal expression (x: Int) => (x
- android发送json并解析返回json
ronin47
android
package com.http.test;
import org.apache.http.HttpResponse;
import org.apache.http.HttpStatus;
import org.apache.http.client.HttpClient;
import org.apache.http.client.methods.HttpGet;
import
- 一份IT实习生的总结
brotherlamp
PHPphp资料php教程php培训php视频
今天突然发现在不知不觉中自己已经实习了 3 个月了,现在可能不算是真正意义上的实习吧,因为现在自己才大三,在这边撸代码的同时还要考虑到学校的功课跟期末考试。让我震惊的是,我完全想不到在这 3 个月里我到底学到了什么,这是一件多么悲催的事情啊。同时我对我应该 get 到什么新技能也很迷茫。所以今晚还是总结下把,让自己在接下来的实习生活有更加明确的方向。最后感谢工作室给我们几个人这个机会让我们提前出来
- 据说是2012年10月人人网校招的一道笔试题-给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 将重物放到天平左侧,问在两边如何添加砝码
bylijinnan
java
public class ScalesBalance {
/**
* 题目:
* 给出一个重物重量为X,另外提供的小砝码重量分别为1,3,9。。。3^N。 (假设N无限大,但一种重量的砝码只有一个)
* 将重物放到天平左侧,问在两边如何添加砝码使两边平衡
*
* 分析:
* 三进制
* 我们约定括号表示里面的数是三进制,例如 47=(1202
- dom4j最常用最简单的方法
chiangfai
dom4j
要使用dom4j读写XML文档,需要先下载dom4j包,dom4j官方网站在 http://www.dom4j.org/目前最新dom4j包下载地址:http://nchc.dl.sourceforge.net/sourceforge/dom4j/dom4j-1.6.1.zip
解开后有两个包,仅操作XML文档的话把dom4j-1.6.1.jar加入工程就可以了,如果需要使用XPath的话还需要
- 简单HBase笔记
chenchao051
hbase
一、Client-side write buffer 客户端缓存请求 描述:可以缓存客户端的请求,以此来减少RPC的次数,但是缓存只是被存在一个ArrayList中,所以多线程访问时不安全的。 可以使用getWriteBuffer()方法来取得客户端缓存中的数据。 默认关闭。 二、Scan的Caching 描述: next( )方法请求一行就要使用一次RPC,即使
- mysqldump导出时出现when doing LOCK TABLES
daizj
mysqlmysqdump导数据
执行 mysqldump -uxxx -pxxx -hxxx -Pxxxx database tablename > tablename.sql
导出表时,会报
mysqldump: Got error: 1044: Access denied for user 'xxx'@'xxx' to database 'xxx' when doing LOCK TABLES
解决
- CSS渲染原理
dcj3sjt126com
Web
从事Web前端开发的人都与CSS打交道很多,有的人也许不知道css是怎么去工作的,写出来的css浏览器是怎么样去解析的呢?当这个成为我们提高css水平的一个瓶颈时,是否应该多了解一下呢?
一、浏览器的发展与CSS
- 《阿甘正传》台词
dcj3sjt126com
Part Ⅰ:
《阿甘正传》Forrest Gump经典中英文对白
Forrest: Hello! My names Forrest. Forrest Gump. You wanna Chocolate? I could eat about a million and a half othese. My momma always said life was like a box ochocol
- Java处理JSON
dyy_gusi
json
Json在数据传输中很好用,原因是JSON 比 XML 更小、更快,更易解析。
在Java程序中,如何使用处理JSON,现在有很多工具可以处理,比较流行常用的是google的gson和alibaba的fastjson,具体使用如下:
1、读取json然后处理
class ReadJSON
{
public static void main(String[] args)
- win7下nginx和php的配置
geeksun
nginx
1. 安装包准备
nginx : 从nginx.org下载nginx-1.8.0.zip
php: 从php.net下载php-5.6.10-Win32-VC11-x64.zip, php是免安装文件。
RunHiddenConsole: 用于隐藏命令行窗口
2. 配置
# java用8080端口做应用服务器,nginx反向代理到这个端口即可
p
- 基于2.8版本redis配置文件中文解释
hongtoushizi
redis
转载自: http://wangwei007.blog.51cto.com/68019/1548167
在Redis中直接启动redis-server服务时, 采用的是默认的配置文件。采用redis-server xxx.conf 这样的方式可以按照指定的配置文件来运行Redis服务。下面是Redis2.8.9的配置文
- 第五章 常用Lua开发库3-模板渲染
jinnianshilongnian
nginxlua
动态web网页开发是Web开发中一个常见的场景,比如像京东商品详情页,其页面逻辑是非常复杂的,需要使用模板技术来实现。而Lua中也有许多模板引擎,如目前我在使用的lua-resty-template,可以渲染很复杂的页面,借助LuaJIT其性能也是可以接受的。
如果学习过JavaEE中的servlet和JSP的话,应该知道JSP模板最终会被翻译成Servlet来执行;而lua-r
- JZSearch大数据搜索引擎
颠覆者
JavaScript
系统简介:
大数据的特点有四个层面:第一,数据体量巨大。从TB级别,跃升到PB级别;第二,数据类型繁多。网络日志、视频、图片、地理位置信息等等。第三,价值密度低。以视频为例,连续不间断监控过程中,可能有用的数据仅仅有一两秒。第四,处理速度快。最后这一点也是和传统的数据挖掘技术有着本质的不同。业界将其归纳为4个“V”——Volume,Variety,Value,Velocity。大数据搜索引
- 10招让你成为杰出的Java程序员
pda158
java编程框架
如果你是一个热衷于技术的
Java 程序员, 那么下面的 10 个要点可以让你在众多 Java 开发人员中脱颖而出。
1. 拥有扎实的基础和深刻理解 OO 原则 对于 Java 程序员,深刻理解 Object Oriented Programming(面向对象编程)这一概念是必须的。没有 OOPS 的坚实基础,就领会不了像 Java 这些面向对象编程语言
- tomcat之oracle连接池配置
小网客
oracle
tomcat版本7.0
配置oracle连接池方式:
修改tomcat的server.xml配置文件:
<GlobalNamingResources>
<Resource name="utermdatasource" auth="Container"
type="javax.sql.DataSou
- Oracle 分页算法汇总
vipbooks
oraclesql算法.net
这是我找到的一些关于Oracle分页的算法,大家那里还有没有其他好的算法没?我们大家一起分享一下!
-- Oracle 分页算法一
select * from (
select page.*,rownum rn from (select * from help) page
-- 20 = (currentPag