- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- Python与机器学习库Scikit-learn进阶
master_chenchengg
pythonpythonPythonpython开发IT
Python与机器学习库Scikit-learn进阶Scikit-learn进阶之旅:从新手到高手的必经之路为什么选择Scikit-learn?安装与环境设置特征工程的艺术:打造更强大的预测模型数据清洗特征构造模型调优秘籍:网格搜索与交叉验证的最佳实践网格搜索交叉验证集成学习的魅力:提升模型性能的组合拳随机森林梯度提升机堆叠实战案例解析:使用Scikit-learn解决真实世界问题数据准备模型训练
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- 【Python】pandas.cut()函数的用法
pandas.cut()函数是一个非常有用的工具,用于将数值型数据按照指定的分箱或区间进行分割,从而将连续的数值变量转换为离散的类别变量。这在数据分析和机器学习的特征工程中尤其有用,因为它可以帮助揭示不同区间内的数据分布特征,或者简化模型的输入。基本用法pandas.cut()的基本语法如下:pandas.cut(x,bins,right=True,labels=None,retbins=Fals
- 基于Python的酒店订单数据分析与可视化实战
不若浮生一梦
python作业python数据分析开发语言
本文将通过一个酒店订单数据集,展示如何使用Python进行完整的数据分析流程,包括数据清洗、特征工程、探索性分析、可视化以及业务洞察,适合数据分析初学者或想通过项目提升数据思维的开发者。一、项目背景随着旅游业的迅速发展,酒店运营者越来越依赖数据分析来提升客户体验与优化收益管理。本项目基于某国际连锁酒店集团提供的真实订单数据,包含超过10万条记录,涵盖订单类型、顾客行为、取消情况等多个维度。目标是通
- Python Pandas.cut函数解析与实战教程
皓月照山川
pandaspythonpandas开发语言
PythonPandas.cut函数解析与实战教程摘要pandas.cut是数据分析工具库Pandas中一个极其强大且常用的函数。它的核心功能是将连续的数值型数据根据指定的间断点(bins)进行分割,转换成离散化的区间类别(categoricaldata)。这种操作在数据预处理、特征工程和数据可视化中至关重要,例如,将用户的年龄分段、将考试分数评级、或将销售额划分为不同的等级。本文章将从基础用法到
- 机器学习从入门到实践:算法、特征工程与模型评估详解
目录摘要1.引言2.机器学习概述2.1什么是机器学习?2.2机器学习的发展历史2.3机器学习的应用3.机器学习算法分类3.1监督学习(SupervisedLearning)3.2无监督学习(UnsupervisedLearning)3.3半监督学习(Semi-SupervisedLearning)4算法详解4.1分类算法详解(1)逻辑回归(LogisticRegression)(2)决策树(Dec
- 数据分析领域如何借助AI人工智能升级
AI天才研究院
ChatGPT计算AI大模型应用入门实战与进阶数据分析人工智能数据挖掘ai
数据分析领域如何借助AI人工智能升级关键词:数据分析、人工智能、机器学习、自动化分析、智能决策、数据预处理、预测分析摘要:本文系统阐述数据分析领域如何通过人工智能实现技术升级。从传统数据分析的瓶颈出发,解析AI驱动的核心技术架构,包括自动化数据预处理、智能特征工程、预测分析模型、自然语言处理在数据分析中的应用。通过具体算法实现、数学模型推导和项目实战案例,展示AI如何提升数据分析效率、挖掘数据深度
- 用Python构建机器学习模型预测股票趋势:从数据到部署的实战指南
SaleCoder
python机器学习开发语言Python股票预测LSTM股票模型机器学习股票趋势
引言在AI驱动的金融时代,机器学习股票趋势预测已成为投资者和开发者关注的热点。通过Python,我们可以构建智能模型,分析历史数据并预测未来股价走势。这不仅结合了时间序列分析和深度学习技术,还能帮助用户做出更明智的投资决策。本文将详细指导你用Python从零构建一个LSTM股票模型,结合线性回归作为基准,融入常用股票预测方法如移动平均和特征工程。我们会使用真实数据(如苹果股票),强调模型的难度与高
- 数据科学与大数据技术专业的核心课程体系及发展路径全解析
YangYang9YangYan
大数据
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、课程体系三维地图二、核心课程能力矩阵课程模块关键技能行业应用场景工具链分布式计算Spark调优用户行为日志分析AWSEMR/Databricks数据挖掘特征工程金融反欺诈模型Scikit-learn实时数据处理Flink窗口计算物联网设备监控Kafka+Flink数据治理元数据管理企业
- 数学专业转型数据分析竞争力发展报告
Re_Yang09
数据分析数据挖掘
一、核心优势拆解(1)数学能力与数据分析对应关系数学课程数据分析应用场景比较优势说明概率论假设检验设计能准确判断统计显著性阈值实变函数数据质量评估异常值检测的严格性更高线性代数特征工程构建矩阵运算优化模型训练效率(2)典型优势案例金融风控场景:数学背景者构建的违约预测模型AUC值平均高0.15用户画像分析:数学系毕业生提出的分层抽样方案降低30%调研成本二、技能补全路线图三、转型学习路径(1)阶段
- Python探索性数据分析库之sweetviz使用详解
概要Sweetviz是一个Python库,专为数据科学家和分析师设计,旨在加速探索性数据分析(EDA)过程。在数据科学项目中,探索性数据分析是必不可少的步骤,但通常也是最耗时的环节之一。Sweetviz通过自动生成高度详细、交互式且美观的可视化报告,大幅简化了这一过程。该库能够对数据集进行全面分析,包括特征分布、相关性、缺失值和目标变量关系等,使用户能够快速理解数据结构和潜在模式,为后续的特征工程
- 数据处理和分析之分类算法:XGBoost:机器学习基础理论
kkchenkx
数据挖掘机器学习分类数据挖掘
数据处理和分析之分类算法:XGBoost:机器学习基础理论数据预处理与特征工程数据清洗数据清洗是数据预处理的第一步,旨在去除数据集中的噪声、不一致性和缺失值,确保数据的质量。这包括处理空值、异常值、重复数据和不一致的数据格式。示例:处理缺失值假设我们有一个包含用户年龄、性别和收入的数据集,其中年龄和收入字段存在缺失值。importpandasaspdimportnumpyasnp#创建示例数据集d
- 基于SVm和随机森林算法模型的中国黄金价格预测分析与研究
python编程狮
支持向量机算法随机森林python机器学习人工智能
摘要本研究基于回归模型,运用支持向量机(SVM)、决策树和随机森林算法,对中国黄金价格进行预测分析。通过历史黄金价格数据的分析和特征工程,建立了相应的预测模型,并利用SVM、决策树和随机森林算法进行训练和预测。首先,通过对黄金价格时间序列数据的探索性分析,发现黄金价格存在一定的趋势和季节性变化。随后,进行了数据预处理和特征选择,为建立准确的预测模型奠定了基础。分别使用SVM、决策树和随机森林算法建
- AI原生应用中的用户画像构建:从理论到实践全解析
AI原生应用中的用户画像构建:从理论到实践全解析关键词:用户画像、AI原生应用、特征工程、机器学习、个性化推荐、数据隐私、模型优化摘要:本文全面解析AI原生应用中用户画像构建的全过程,从基础概念到核心技术,再到实际应用和未来趋势。我们将用通俗易懂的方式讲解用户画像如何像"数字身份证"一样工作,深入探讨特征提取、模型构建等关键技术,并通过实际案例展示用户画像在推荐系统、精准营销等场景中的应用。文章还
- Python爬虫【四十五章】爬虫攻防战:异步并发+AI反爬识别的技术解密
程序员_CLUB
Python入门到进阶python爬虫人工智能
目录引言:当爬虫工程师遇上AI反爬官一、异步并发基础设施层1.1混合调度框架设计1.2智能连接池管理二、机器学习反爬识别层2.1特征工程体系2.2轻量级在线推理三、智能决策系统3.1动态策略引擎3.2实时对抗案例四、性能优化实战4.1全链路压测数据4.2典型故障处理案例五、总结:构建智能化的爬虫生态系统Python爬虫相关文章(推荐)引言:当爬虫工程师遇上AI反爬官在大数据采集领域,我们正经历着技
- python学习打卡:DAY 18 推断聚类后簇的类型
西西西仓鼠
python训练营python学习聚类
@浙大疏锦行聚类后的分析:推断簇的类型知识点回顾:推断簇含义的2个思路:先选特征和后选特征通过可视化图形借助ai定义簇的含义科研逻辑闭环:通过精度判断特征工程价值作业:参考示例代码对心脏病数据集采取类似操作,并且评估特征工程后模型效果有无提升。在聚类分析中,推断簇的类型是理解数据内在结构和业务意义的关键步骤。以下是系统化的推断方法及常见簇类型的总结:一、簇的基本类型明显分离的簇特征:不同簇中任意两
- 基于深度学习的手写数字和符号识别系统:YOLOv5/v6/v7/v8/v10模型实现与UI界面集成
YOLO实战营
深度学习YOLOui人工智能目标检测计算机视觉
1.引言随着人工智能和深度学习技术的发展,手写数字和符号识别已经成为计算机视觉领域的重要研究方向。手写识别在很多实际应用中扮演着关键角色,例如邮政编码识别、表单自动处理和智能教育系统等。传统的手写识别方法通常依赖于复杂的特征工程,而深度学习则能够自动从数据中学习到特征,极大地提高了识别精度和速度。本文将介绍如何构建一个基于YOLO系列模型(YOLOv5、YOLOv6、YOLOv7、YOLOv8、Y
- 借助 Amazon SageMaker Catalog 功能,简化从数据到洞察的路径
在数据驱动的时代,企业常陷于数据孤岛、特征重复开发、模型溯源困难等困境。AmazonSageMakerCatalog应运而生,作为统一的数据和特征治理中心,它能打通从原始数据到模型部署的全链路,显著加速数据科学项目落地。一、痛点:数据科学项目中的常见瓶颈数据发现困难:数据分散在S3、Redshift等不同存储中,缺乏统一视图特征管理混乱:特征工程脚本散落各处,无法复用和共享模型溯源缺失:无法追踪模
- Java 大视界 -- Java 大数据机器学习模型在金融市场情绪分析与投资策略制定中的应用
青云交
大数据新视界Java大视界java大数据机器学习情绪分析智能投资多源数据
Java大视界--Java大数据机器学习模型在金融市场情绪分析与投资策略制定中的应用)引言:正文:一、金融情绪数据的立体化采集与治理1.1多模态数据采集架构1.2数据治理与特征工程二、Java机器学习模型的工程化实践2.1情感分析模型的深度优化2.2强化学习驱动的动态投资策略三、顶级机构实战:Java系统的金融炼金术四、技术前沿:Java与金融科技的未来融合4.1量子机器学习集成4.2联邦学习在合
- R语言金融工程:量化价值投资中的数据处理技巧
量化价值投资入门到精通
r语言金融开发语言ai
R语言金融工程:量化价值投资中的数据处理技巧关键词:R语言、金融工程、量化价值投资、数据处理、财务指标、时间序列、风险控制摘要:在量化价值投资领域,高质量的数据处理是策略有效性的核心基础。本文系统解析基于R语言的金融数据处理全流程,涵盖数据获取、清洗、特征工程、时间序列分析等关键环节。通过财务指标计算、异常值检测、缺失值处理、因子标准化等实用技巧,结合quantmod、TTR、dplyr等R包的深
- 117、Python机器学习:数据预处理与特征工程技巧
多多的编程笔记
python机器学习开发语言
Python开发之机器学习准备:数据预处理与特征工程机器学习是当前人工智能领域的热门方向之一。而作为机器学习的核心组成部分,数据预处理与特征工程对于模型的性能有着至关重要的影响。本文将带领大家了解数据预处理与特征工程的基本概念,以及它们在实际应用场景中的重要性。数据预处理数据预处理是机器学习中的第一步,它的主要目的是将原始数据转换成适合进行机器学习模型训练的形式。就像我们在做饭之前需要清洗和准备食
- python automl_自动化的机器学习(AutoML):将AutoML部署到云中
编辑推荐:在本文中,将介绍一种AutoML设置,使用Python、Flask在云中训练和部署管道;以及两个可自动完成特征工程和模型构建的AutoML框架。本文来自于搜狐网,由火龙果软件Alice编辑、推荐。AutoML到底是什么?AutoML是一个很宽泛的术语,理论上来说,它囊括从数据探索到模型构建这一完整的数据科学循环周期。但是,我发现这个术语更多时候是指自动的特征预处理和选择、模型算法选择和超
- 【机器学习笔记Ⅰ】10 特征工程
特征工程(FeatureEngineering)详解特征工程是机器学习和数据科学中的核心环节,旨在通过对原始数据的转换、组合和提取,构建更适合模型的高质量特征。其质量直接决定模型性能上限(“数据和特征决定了模型的上限,而算法只是逼近这个上限”)。1.特征工程的核心目标提升模型性能:增强特征与目标变量的相关性。降低计算成本:减少冗余特征,加速训练。改善泛化能力:避免过拟合,提高鲁棒性。2.特征工程的
- 基于大模型的急性出血坏死性胰腺炎预测技术方案
LCG元
人工智能python
目录一、算法实现伪代码1.数据预处理与特征工程2.大模型训练(以Transformer为例)3.实时预测与动态调整二、模块流程图1.术前预测流程2.术中动态决策流程3.术后护理流程三、系统集成方案1.系统架构图2.核心模块交互流程四、系统部署拓扑图1.物理部署拓扑2.部署说明五、技术验证方案1.交叉验证流程2.实验验证设计六、健康教育模块示例一、算法实现伪代码1.数据预处理与特征工程#数据清洗与归
- 机器学习知识点复习 上(保研、复试、面试)百面机器学习笔记
机器学习知识点复习上一、特征工程1.为什么需要对数值类型的特征做归一化?2.文本表示模型3.图像数据不足的处理方法二、模型评估1.常见的评估指标2.ROC曲线3.为什么在一些场景中要使用余弦相似度而不是欧氏距离?4.过拟合和欠拟合三、经典算法1.支持向量机SVM2.逻辑回归3.决策树四、降维1.主成分分析(PrinalComponentsAnalysis,PCA)降维中最经典的方法2.线性判别分析
- Python 数据分析与可视化 Day 14 - 建模复盘 + 多模型评估对比(逻辑回归 vs 决策树)
蓝婷儿
pythonpython数据分析逻辑回归
✅今日目标回顾整个本周数据分析&建模流程学会训练第二种模型:决策树(DecisionTree)掌握多模型对比评估的方法与实践输出综合对比报告:准确率、精确率、召回率、F1等指标为后续模型调优与扩展打下基础一、本周流程快速回顾步骤内容第1天高级数据操作(索引、透视、变形)第2天缺失值和异常值处理第3天多表合并与连接第4天特征工程(编码、归一化、时间)第5天数据集拆分(训练集/测试集)第6天逻辑回归模
- Orange3机器学习建模和可视化分析数据预处理、特征工程、算法训练
维度软件库
测试工具开源软件电脑
各位数据挖掘爱好者们!今天给你们介绍一款超厉害的开源软件——Orange3。它就像一个神奇的工具箱,你只要通过拖放组件就能完成机器学习建模和可视化分析,软件下载地址安装包它支持数据预处理、特征工程、算法训练和评估整个流程,就像一个贴心的管家,把数据挖掘的事儿全给你安排得明明白白!它还内置了箱线图、决策树这些可视化工具,能直观地把数据分布和模型结构展示出来,就像给你开了个透视眼,让数据一目了然!这软
- Python Pandas 数据的体育数据处理和分析
Python编程之道
Python人工智能与大数据Python编程之道pythonpandas开发语言ai
PythonPandas数据的体育数据处理和分析关键词:PythonPandas,体育数据分析,数据清洗,数据可视化,特征工程,机器学习,体育统计摘要:本文将深入探讨如何使用PythonPandas库进行体育数据的处理和分析。我们将从基础的数据导入和清洗开始,逐步深入到复杂的统计分析、可视化展示以及机器学习建模。文章将涵盖数据处理的全流程,包括数据获取、清洗、转换、分析和可视化,并结合实际体育数据
- 【大模型面试】大模型Prompt Engineer面试题及参考答案
大模型知识
prompt人工智能开发语言pythonchatgpt深度学习大模型
一、基础概念类1.什么是大模型?大模型通常指具有庞大参数规模的机器学习模型,尤其是在自然语言处理(NLP)和计算机视觉等领域。这些模型能够学习到大量数据中的复杂模式和特征,具备强大的泛化能力,可在多种任务上表现出色,如GPT系列、BERT等。2.大模型与传统机器学习模型的区别是什么?传统机器学习模型参数规模相对较小,往往针对特定任务进行设计和训练,需要较多人工特征工程。而大模型参数数量庞大,通过在
- 数据采集高并发的架构应用
3golden
.net
问题的出发点:
最近公司为了发展需要,要扩大对用户的信息采集,每个用户的采集量估计约2W。如果用户量增加的话,将会大量照成采集量成3W倍的增长,但是又要满足日常业务需要,特别是指令要及时得到响应的频率次数远大于预期。
&n
- 不停止 MySQL 服务增加从库的两种方式
brotherlamp
linuxlinux视频linux资料linux教程linux自学
现在生产环境MySQL数据库是一主一从,由于业务量访问不断增大,故再增加一台从库。前提是不能影响线上业务使用,也就是说不能重启MySQL服务,为了避免出现其他情况,选择在网站访问量低峰期时间段操作。
一般在线增加从库有两种方式,一种是通过mysqldump备份主库,恢复到从库,mysqldump是逻辑备份,数据量大时,备份速度会很慢,锁表的时间也会很长。另一种是通过xtrabacku
- Quartz——SimpleTrigger触发器
eksliang
SimpleTriggerTriggerUtilsquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208166 一.概述
SimpleTrigger触发器,当且仅需触发一次或者以固定时间间隔周期触发执行;
二.SimpleTrigger的构造函数
SimpleTrigger(String name, String group):通过该构造函数指定Trigger所属组和名称;
Simpl
- Informatica应用(1)
18289753290
sqlworkflowlookup组件Informatica
1.如果要在workflow中调用shell脚本有一个command组件,在里面设置shell的路径;调度wf可以右键出现schedule,现在用的是HP的tidal调度wf的执行。
2.designer里面的router类似于SSIS中的broadcast(多播组件);Reset_Workflow_Var:参数重置 (比如说我这个参数初始是1在workflow跑得过程中变成了3我要在结束时还要
- python 获取图片验证码中文字
酷的飞上天空
python
根据现成的开源项目 http://code.google.com/p/pytesser/改写
在window上用easy_install安装不上 看了下源码发现代码很少 于是就想自己改写一下
添加支持网络图片的直接解析
#coding:utf-8
#import sys
#reload(sys)
#sys.s
- AJAX
永夜-极光
Ajax
1.AJAX功能:动态更新页面,减少流量消耗,减轻服务器负担
2.代码结构:
<html>
<head>
<script type="text/javascript">
function loadXMLDoc()
{
.... AJAX script goes here ...
- 创业OR读研
随便小屋
创业
现在研一,有种想创业的想法,不知道该不该去实施。因为对于的我情况这两者是矛盾的,可能就是鱼与熊掌不能兼得。
研一的生活刚刚过去两个月,我们学校主要的是
- 需求做得好与坏直接关系着程序员生活质量
aijuans
IT 生活
这个故事还得从去年换工作的事情说起,由于自己不太喜欢第一家公司的环境我选择了换一份工作。去年九月份我入职现在的这家公司,专门从事金融业内软件的开发。十一月份我们整个项目组前往北京做现场开发,从此苦逼的日子开始了。
系统背景:五月份就有同事前往甲方了解需求一直到6月份,后续几个月也完
- 如何定义和区分高级软件开发工程师
aoyouzi
在软件开发领域,高级开发工程师通常是指那些编写代码超过 3 年的人。这些人可能会被放到领导的位置,但经常会产生非常糟糕的结果。Matt Briggs 是一名高级开发工程师兼 Scrum 管理员。他认为,单纯使用年限来划分开发人员存在问题,两个同样具有 10 年开发经验的开发人员可能大不相同。近日,他发表了一篇博文,根据开发者所能发挥的作用划分软件开发工程师的成长阶段。
初
- Servlet的请求与响应
百合不是茶
servletget提交java处理post提交
Servlet是tomcat中的一个重要组成,也是负责客户端和服务端的中介
1,Http的请求方式(get ,post);
客户端的请求一般都会都是Servlet来接受的,在接收之前怎么来确定是那种方式提交的,以及如何反馈,Servlet中有相应的方法, http的get方式 servlet就是都doGet(
- web.xml配置详解之listener
bijian1013
javaweb.xmllistener
一.定义
<listener>
<listen-class>com.myapp.MyListener</listen-class>
</listener>
二.作用 该元素用来注册一个监听器类。可以收到事件什么时候发生以及用什么作为响
- Web页面性能优化(yahoo技术)
Bill_chen
JavaScriptAjaxWebcssYahoo
1.尽可能的减少HTTP请求数 content
2.使用CDN server
3.添加Expires头(或者 Cache-control) server
4.Gzip 组件 server
5.把CSS样式放在页面的上方。 css
6.将脚本放在底部(包括内联的) javascript
7.避免在CSS中使用Expressions css
8.将javascript和css独立成外部文
- 【MongoDB学习笔记八】MongoDB游标、分页查询、查询结果排序
bit1129
mongodb
游标
游标,简单的说就是一个查询结果的指针。游标作为数据库的一个对象,使用它是包括
声明
打开
循环抓去一定数目的文档直到结果集中的所有文档已经抓取完
关闭游标
游标的基本用法,类似于JDBC的ResultSet(hasNext判断是否抓去完,next移动游标到下一条文档),在获取一个文档集时,可以提供一个类似JDBC的FetchSize
- ORA-12514 TNS 监听程序当前无法识别连接描述符中请求服务 的解决方法
白糖_
ORA-12514
今天通过Oracle SQL*Plus连接远端服务器的时候提示“监听程序当前无法识别连接描述符中请求服务”,遂在网上找到了解决方案:
①打开Oracle服务器安装目录\NETWORK\ADMIN\listener.ora文件,你会看到如下信息:
# listener.ora Network Configuration File: D:\database\Oracle\net
- Eclipse 问题 A resource exists with a different case
bozch
eclipse
在使用Eclipse进行开发的时候,出现了如下的问题:
Description Resource Path Location TypeThe project was not built due to "A resource exists with a different case: '/SeenTaoImp_zhV2/bin/seentao'.&
- 编程之美-小飞的电梯调度算法
bylijinnan
编程之美
public class AptElevator {
/**
* 编程之美 小飞 电梯调度算法
* 在繁忙的时间,每次电梯从一层往上走时,我们只允许电梯停在其中的某一层。
* 所有乘客都从一楼上电梯,到达某层楼后,电梯听下来,所有乘客再从这里爬楼梯到自己的目的层。
* 在一楼时,每个乘客选择自己的目的层,电梯则自动计算出应停的楼层。
* 问:电梯停在哪
- SQL注入相关概念
chenbowen00
sqlWeb安全
SQL Injection:就是通过把SQL命令插入到Web表单递交或输入域名或页面请求的查询字符串,最终达到欺骗服务器执行恶意的SQL命令。
具体来说,它是利用现有应用程序,将(恶意)的SQL命令注入到后台数据库引擎执行的能力,它可以通过在Web表单中输入(恶意)SQL语句得到一个存在安全漏洞的网站上的数据库,而不是按照设计者意图去执行SQL语句。
首先让我们了解什么时候可能发生SQ
- [光与电]光子信号战防御原理
comsci
原理
无论是在战场上,还是在后方,敌人都有可能用光子信号对人体进行控制和攻击,那么采取什么样的防御方法,最简单,最有效呢?
我们这里有几个山寨的办法,可能有些作用,大家如果有兴趣可以去实验一下
根据光
- oracle 11g新特性:Pending Statistics
daizj
oracledbms_stats
oracle 11g新特性:Pending Statistics 转
从11g开始,表与索引的统计信息收集完毕后,可以选择收集的统信息立即发布,也可以选择使新收集的统计信息处于pending状态,待确定处于pending状态的统计信息是安全的,再使处于pending状态的统计信息发布,这样就会避免一些因为收集统计信息立即发布而导致SQL执行计划走错的灾难。
在 11g 之前的版本中,D
- 快速理解RequireJs
dengkane
jqueryrequirejs
RequireJs已经流行很久了,我们在项目中也打算使用它。它提供了以下功能:
声明不同js文件之间的依赖
可以按需、并行、延时载入js库
可以让我们的代码以模块化的方式组织
初看起来并不复杂。 在html中引入requirejs
在HTML中,添加这样的 <script> 标签:
<script src="/path/to
- C语言学习四流程控制if条件选择、for循环和强制类型转换
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i, j;
scanf("%d %d", &i, &j);
if (i > j)
printf("i大于j\n");
else
printf("i小于j\n");
retu
- dictionary的使用要注意
dcj3sjt126com
IO
NSDictionary *dict = [NSDictionary dictionaryWithObjectsAndKeys:
user.user_id , @"id",
user.username , @"username",
- Android 中的资源访问(Resource)
finally_m
xmlandroidStringdrawablecolor
简单的说,Android中的资源是指非代码部分。例如,在我们的Android程序中要使用一些图片来设置界面,要使用一些音频文件来设置铃声,要使用一些动画来显示特效,要使用一些字符串来显示提示信息。那么,这些图片、音频、动画和字符串等叫做Android中的资源文件。
在Eclipse创建的工程中,我们可以看到res和assets两个文件夹,是用来保存资源文件的,在assets中保存的一般是原生
- Spring使用Cache、整合Ehcache
234390216
springcacheehcache@Cacheable
Spring使用Cache
从3.1开始,Spring引入了对Cache的支持。其使用方法和原理都类似于Spring对事务管理的支持。Spring Cache是作用在方法上的,其核心思想是这样的:当我们在调用一个缓存方法时会把该方法参数和返回结果作为一个键值对存放在缓存中,等到下次利用同样的
- 当druid遇上oracle blob(clob)
jackyrong
oracle
http://blog.csdn.net/renfufei/article/details/44887371
众所周知,Oracle有很多坑, 所以才有了去IOE。
在使用Druid做数据库连接池后,其实偶尔也会碰到小坑,这就是使用开源项目所必须去填平的。【如果使用不开源的产品,那就不是坑,而是陷阱了,你都不知道怎么去填坑】
用Druid连接池,通过JDBC往Oracle数据库的
- easyui datagrid pagination获得分页页码、总页数等信息
ldzyz007
var grid = $('#datagrid');
var options = grid.datagrid('getPager').data("pagination").options;
var curr = options.pageNumber;
var total = options.total;
var max =
- 浅析awk里的数组
nigelzeng
二维数组array数组awk
awk绝对是文本处理中的神器,它本身也是一门编程语言,还有许多功能本人没有使用到。这篇文章就单单针对awk里的数组来进行讨论,如何利用数组来帮助完成文本分析。
有这么一组数据:
abcd,91#31#2012-12-31 11:24:00
case_a,136#19#2012-12-31 11:24:00
case_a,136#23#2012-12-31 1
- 搭建 CentOS 6 服务器(6) - TigerVNC
rensanning
centos
安装GNOME桌面环境
# yum groupinstall "X Window System" "Desktop"
安装TigerVNC
# yum -y install tigervnc-server tigervnc
启动VNC服务
# /etc/init.d/vncserver restart
# vncser
- Spring 数据库连接整理
tomcat_oracle
springbeanjdbc
1、数据库连接jdbc.properties配置详解 jdbc.url=jdbc:hsqldb:hsql://localhost/xdb jdbc.username=sa jdbc.password= jdbc.driver=不同的数据库厂商驱动,此处不一一列举 接下来,详细配置代码如下:
Spring连接池  
- Dom4J解析使用xpath java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
xp9802
用Dom4J解析xml,以前没注意,今天使用dom4j包解析xml时在xpath使用处报错
异常栈:java.lang.NoClassDefFoundError: org/jaxen/JaxenException异常
导入包 jaxen-1.1-beta-6.jar 解决;
&nb