- 论文笔记:EMR-MERGING: Tuning-Free High-Performance Model Merging
UQI-LIUWJ
论文笔记论文阅读
2024neurips1intro随着HuggingFace、timm和torchvision等开源仓库的发展,预训练与微调模型的数量激增,这导致模型部署的存储和成本负担加重。多任务学习(MTL)通过联合训练多数据集来部分缓解上述问题,但它存在以下缺陷:(i)计算成本高;(ii)隐私数据限制导致数据不可获取因此,近年来出现了**模型融合(modelmerging)**方法,试图通过权重合并的方式绕
- 【论文笔记ing】Pointerformer: Deep Reinforced Multi-Pointer Transformer for the Traveling Salesman Problem
Booksort
online笔记论文论文阅读transformer深度学习
论文中使用一个PointerFormer模型编码器部分:可逆残差模型堆叠解码器部分:指针网络自回归对于一次任务而言,推理阶段:编码器部分:一次解码器部分:循环N次,直至任务结束在训练阶段,使用强化学习,对于一个N个节点的TSP实例,算法中会以不同的起点,跑N次,得到N个轨迹,以满足TSP的对称特性,表示这都是属于一个TSP问题的(真实)解然后会计算这样表示归一化奖励,得到一个advantage,然
- 【论文笔记】GaussianFusion: Gaussian-Based Multi-Sensor Fusion for End-to-End Autonomous Driving
原文链接:https://arxiv.org/abs/2506.00034v1简介:现有的多传感器融合方法多使用基于注意力的拉直(flatten)融合或通过几何变换的BEV融合,但前者可解释性差,后者计算开销大(如下图(a)(b)所示)。本文提出GaussianFusion(下图(c)),一种基于高斯的多传感器融合框架,用于端到端自动驾驶。使用直观而紧凑的高斯表达,聚合不同传感器的信息。具体来说,
- 【论文笔记】RAGLAB: A Modular and Research-Oriented Unified Framework for Retrieval-Augmented Generation
AustinCyy
论文笔记论文阅读
论文信息论文标题:RAGLAB:AModularandResearch-OrientedUnifiedFrameworkforRetrieval-AugmentedGeneration-EMNLP24论文作者:XuanwangZhang-NanjingUniversity论文链接:https://arxiv.org/abs/2408.11381代码链接:https://github.com/fat
- Llama改进之——RoPE旋转位置编码
愤怒的可乐
NLP项目实战#LLaMARoPE旋转位置编码
引言旋转位置编码(RotaryPositionEmbedding,RoPE)将绝对相对位置依赖纳入自注意力机制中,以增强Transformer架构的性能。目前很火的大模型LLaMA、QWen等都应用了旋转位置编码。之前在[论文笔记]ROFORMER中对旋转位置编码的原始论文进行了解析,重点推导了旋转位置编码的公式,本文侧重实现,同时尽量简化数学上的推理,详细推理可见最后的参考文章。复数与极坐标复数
- Llama改进之——均方根层归一化RMSNorm
愤怒的可乐
NLP项目实战#llama
引言在学习完GPT2之后,从本文开始进入Llama模型系列。本文介绍Llama模型的改进之RMSNorm(均方根层归一化)。它是由RootMeanSquareLayerNormalization论文提出来的,可以参阅其论文笔记1。LayerNorm层归一化(LayerNorm)对Transformer等模型来说非常重要,它可以帮助稳定训练并提升模型收敛性。LayerNorm针对一个样本所有特征计算
- 论文笔记 <交通灯><多智能体>CoLight管理交通灯
青椒大仙KI11
论文阅读
今天看的是论文Colight:学习网络级合作进行交通信号控制论文提出的CoLight模型是一种基于强化学习和图注意力网络的交通信号灯控制方法,旨在解决城市道路网络中的交通信号的写作问题,提升车辆通行效率。问题定义为:将交通信号控制问题建模为马尔可夫博弈,每个路口由一个智能体控制,智能体通过观察部分系统状态(当前相位和各车道车辆数),选择动作(下一时间段的相位),目标是最小化路口周围车道的平均队列长
- 《基于超声的深度学习模型用于降低BI-RADS 4A乳腺病变的恶性率》论文笔记 MobileNet
往事随风、、
论文笔记机器学习深度学习论文阅读人工智能机器学习健康医疗
《APPLICATIONOFDEEPLEARNINGTOREDUCETHERATEOFMALIGNANCYAMONGBI-RADS4ABREASTLESIONSBASEDONULTRASONOGRAPHY》《基于超声的深度学习模型用于降低BI-RADS4A乳腺病变的恶性率》原文地址:链接文章目录摘要简介方法患者图像获取与处理深度学习模型统计分析结果讨论结论摘要本研究旨在开发一个基于超声(US)图像
- 论文笔记--Language Models are Unsupervised Multitask Learners
Isawany
论文阅读论文阅读语言模型transformerchatgpt自然语言处理
论文笔记GPT-2--LanguageModelsareUnsupervisedMultitaskLearners1.文章简介2.文章导读2.1概括2.2文章重点技术2.2.1数据集WebText2.2.2分词方法3.GPT-1&GPT-24.文章亮点5.原文传送门6.References1.文章简介标题:LanguageModelsareUnsupervisedMultitaskLearners
- You Only Look Once Unified, Real-Time Object Detection论文笔记
__Lo__
目标检测论文阅读深度学习
文章结构统一检测框架(UnifiledDetection)核心思想YOLO将目标检测视为一个端到端的回归问题,输入的图像经过SingleForwardPass,直接输出物体的信息(边界框的位置、边界框的置信度、类别概率);优势在于速度快,全局理解上下文,这里全局理解上下文的意思是识别物体和背景的关系,减少误检。网络设计网格划分(GridDivision)将图像划分为一个S×S的网格,文中S=7;共
- 【论文笔记】UnifiedQA:新SOTA,生成模型一统问答任务
iLuz
深度学习自然语言处理
目录引言模型介绍1.输入格式2.实验结果总结引言问答任务有多种形式,常见的有抽取式问答(EX)、摘要式问答(AB)、多选题式问答(MC)、判断式问答(YN)。一般的解决方案是针对不同形式的问答任务设计不同的模型。例如,抽取式问答、多选题式问答、判断式问答可以转化为分类任务,摘要式问答可以转换为生成任务。尽管任务形式不同,但模型所需的语义理解和推理能力是共通的,或许不需要format-special
- [论文笔记] [2008] [ICML] Extracting and Composing Robust Features with Denoising Autoencoders
Alexzhuan
DL神经网络机器学习
在06年以前,想要去训练一个多层的神经网络是比较困难的,主要的问题是超过两层的模型,当时没有好的策略或方法使模型优化的很好,得不到预期的效果。在06年,Hinton提出的stackedautoencoders改变了当时的情况,那时候的研究者就开始关注各种自编码模型以及相应的堆叠模型。这篇的作者提出的DAE(DenoisingAutoencoders)就是当时蛮有影响力的工作。那个时候多层模型效果得
- 【论文笔记】SecAlign: Defending Against Prompt Injection with Preference Optimization
AustinCyy
论文笔记论文阅读
论文信息论文标题:SecAlign:DefendingAgainstPromptInjectionwithPreferenceOptimization-CCS25论文作者:SizheChen-UCBerkeley;Meta,FAIR论文链接:https://arxiv.org/abs/2410.05451代码链接:https://github.com/facebookresearch/SecAli
- CLIP论文笔记:Learning Transferable Visual Models From Natural Language Supervision
Q同学的nlp笔记
论文阅读语言模型人工智能nlp自然语言处理
导语会议:ICML2021链接:https://proceedings.mlr.press/v139/radford21a/radford21a.pdf当前的计算机视觉系统通常只能识别预先设定的对象类别,这限制了它们的广泛应用。为了突破这一局限,本文探索了一种新的学习方法,即直接从图像相关的原始文本中学习。本文开发了一种简单的预训练任务,通过预测图片与其对应标题的匹配关系,从而有效地从一个包含4亿
- 论文笔记:Large Language Models are Zero-Shot Next LocationPredictors
UQI-LIUWJ
论文笔记论文阅读语言模型人工智能
1intro下一个地点预测(NL)包括基于个体历史访问位置来预测其未来的位置。NL对于应对各种社会挑战至关重要,包括交通管理和优化、疾病传播控制以及灾害响应管理NL问题已经通过使用马尔可夫模型、基于模式的方法以及最近的深度学习(DL)技术(进行了处理。然而,这些方法并不具备地理转移能力因此,一旦这些模型在某个地理区域训练完毕,如果部署到不同的地理区域,它们将面临严重的性能下降尽管已经做出努力改善地
- 论文笔记:LSTPrompt: Large Language Models as Zero-Shot Time Series Forecastersby Long-Short-Term Prompt
UQI-LIUWJ
论文笔记论文阅读语言模型prompt
202402arxiv1intro1.1大模型+时间序列预测一般有两种类型的方法使用海量时间序列数据重新训练一个时间序列领域的大模型论文笔记:TimeGPT-1_timegpt论文-CSDN博客直接利用现有的大模型,设计prompt,将时间序列数据转换成大模型理解的文本,实现时间序列预测代价小+有成熟的可供使用的大模型1.2本文思路之前的方法大多集中在如何将时间序列数据转换成文本上将时间序列的数字
- 【论文笔记】ResNet论文的全面解析
浩瀚之水_csdn
#论文阅读笔记人工智能
论文:DeepResidualLearningforImageRecognition发表时间:2015发表作者:(MicrosoftResearch)He-Kaiming,Ren-Shaoqing,Sun-Jian论文链接:论文链接一、ResNet论文基本信息论文标题与发表信息论文标题:《DeepResidualLearningforImageRecognition》发表时间:2015年,并在20
- 论文笔记:TrafficPredict: Trajectory Prediction for Heterogeneous Traffic-Agents
CvBeginner
论文笔记轨迹预测计算机视觉
论文笔记:TrafficPredict:TrajectoryPredictionforHeterogeneousTraffic-Agents摘要这是百度在AAAI2019发布的一篇文章。这篇文章提出了一种基于4D-graph的方法实现复杂场景下的轨迹预测,研究对象包含行人、机动车和自行车。实现方法本文提出了一个基于LSTM的算法,名为TrafficPredict。构建了一个4DGraph,输入是轨
- 论文笔记:MobileNetV2: Inverted Residuals and Linear Bottlenecks
菜鸡信息技术
DeepLearning
MobileNetV2:InvertedResidualsandLinearBottlenecksMobileNetV2是MobileNetV1的改进版,Invertedresidual是个非常精妙的设计!MobileNetV1引入depthwiseseparableconvolution代替standardconvolution,减少运算量。MobileNetV1的结构其实非常简单,是类似于VG
- AIGC视频生成模型:ByteDance的PixelDance模型
好评笔记
AIGC深度学习人工智能计算机视觉机器学习transformer论文阅读
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍ByteDance的视频生成模型PixelDance,论文于2023年11月发布,模型上线于2024年9月,同时期上线的模型还有Seaweed(论文未发布)。热门专栏机器学习机器学习笔记合集深度学习深度学习笔记合集优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录热门专栏机器学习深度学习
- Meta的AIGC视频生成模型——Emu Video
好评笔记
AIGC深度学习人工智能机器学习transformer校招面试八股
大家好,这里是好评笔记,公主号:Goodnote,专栏文章私信限时Free。本文详细介绍Meta的视频生成模型EmuVideo,作为Meta发布的第二款视频生成模型,在视频生成领域发挥关键作用。优质专栏回顾:机器学习笔记深度学习笔记多模态论文笔记AIGC—图像文章目录论文摘要引言相关工作文本到图像(T2I)扩散模型视频生成/预测文本到视频(T2V)生成分解生成方法预备知识EmuVideo生成步骤图
- [论文笔记] 超详细解读DeepSeek v3全论文技术报告
心心喵
论文笔记论文阅读
DeepSeek-V3是一个强大的专家混合(Mixture-of-Experts,MoE)语言模型,总共671B参数,每个token激活37B参数(可以理解为有多个专家,但每个token只会选择一部分专家进行推理,所以一个token的预测,只会用到37B参数),DeepSeek-V3使用了多头潜在注意力(
- [论文笔记] pai-megatron qwen1.5报错
心心喵
论文笔记python
Qwen1.5-0.5b-chat使用example中fintune.py报错·Issue#77·QwenLM/Qwen1.5·GitHub解决方案:transformers升级到4.37.0pipinstallsetuptools==65.5.1pipinstalltransformers==4.37.0
- 基于不确定性感知学习的单图像自监督3D人体网格重建 (论文笔记与思考)
Gamma and Beta
读博笔记算法笔记学习3d论文阅读
文章目录论文解决的问题提出的算法以及启发点论文解决的问题首先这是Self-Supervised3DHumanmeshrecoveryfromasingleimagewithuncertainty-awarelearning(AAAI2024)的论文笔记。该文中主要提出了一个自监督的framework用于人体的姿态恢复。主要是解决了现有的方法对大型数据集的依赖。提出的算法以及启发点论文总体的框架其实
- LLM论文笔记 28: Universal length generalization with Turing Programs
Zhouqi_Hua
大模型论文阅读论文阅读语言模型自然语言处理笔记人工智能
Arxiv日期:2024.10.4机构:HarvardUniversity关键词图灵机CoT长度泛化核心结论TuringPrograms的提出提出TuringPrograms,一种基于图灵机计算步骤的通用CoT策略。通过将算法任务分解为逐步的“磁带更新”(类似图灵机的读写操作),允许模型通过简单的文本复制与局部修改完成复杂计算通用性:适用于任何算法任务(加法、乘法、SGD),不依赖任务特定的数据格
- LLM论文笔记 27: Looped Transformers for Length Generalization
Zhouqi_Hua
大模型论文阅读论文阅读语言模型人工智能论文笔记笔记
Arxiv日期:2024.9.25关键词长度泛化transformer结构优化核心结论1.RASP-L限制transformer无法处理包含循环的任务的长度泛化2.LoopTransformer显著提升了长度泛化能力InputInjection显著提升了模型的长度泛化性能,尤其在二进制加法等复杂任务上效果显著在推理中,通过输出置信度判断迭代停止点的策略能够实现接近最佳的性能主要方法Transfor
- Fast-BEV:A Fast and Strong Bird’s-Eye View Perception Baseline——论文笔记
m_buddy
BEVPerception论文阅读人工智能深度学习
参考代码:Fast-BEV一稿多投的另一篇:Fast-BEV:TowardsReal-timeOn-vehicleBird’s-EyeViewPerception1.概述介绍:这篇文章提供了一种可实际部署的BEV感知方案,能够在当今车端主流计算单元上(NvidiaOrin)实现不错的帧率。从camera到BEV的转换思想来自于M2BEV,但是对这个转换方法中使用查找表和映射方法改进,使得整体视角转
- 读论文笔记-Flamingo:少样本视觉语言模型
joseanne_josie
论文阅读语言模型人工智能
读论文笔记-Flamingo:少样本视觉语言模型Plomblems本文拟解决多模态机器学习中,如何将训练好的模型快速适应到少量标注数据的新任务中的问题。Motivations已有的VLM虽然能在zero-shot的场景下适应于新任务,但他们只解决了有限的使用情况(如CLIP只解决了图片分类),由于主要缺乏生成语言的能力其不能应用于开放性任务。其他的一些方法虽然研究了基于视觉的语言生成但在数据量少的
- 论文笔记-基于多层感知器(MLP)的多变量桥式起重机自适应安全制动与距离预测
sagima_sdu
论文阅读
《IETCyber-SystemsandRobotics》出版山东大学TenglongZhang和GuoliangLiu团队的研究成果,文章题为“AdaptiveSafeBrakingandDistancePredictionforOverheadCranesWithMultivariationUsingMLP”。摘要桥式起重机的紧急制动及其制动距离预测是其安全运行中的关键难题。本文采用多层感知器
- 论文笔记:How Can Large Language Models Understand Spatial-Temporal Data?
UQI-LIUWJ
论文笔记论文阅读语言模型人工智能
arxiv2024011introLLM在NLP和CV领域表现出色,但将它们应用于时空预测任务仍然面临挑战,主要问题包括:数据不匹配传统的LLMs设计用于处理序列文本数据,而时空数据具有复杂的结构和动态性,这两者之间存在显著差异模型设计限制现有的时空预测方法通常需要为特定领域设计专门的模型,这限制了模型的通用性和适应性数据稀缺和泛化能力传统的时空预测方法在面对数据稀缺或稀疏的情况下表现不佳,且泛化
- 算法 单链的创建与删除
换个号韩国红果果
c算法
先创建结构体
struct student {
int data;
//int tag;//标记这是第几个
struct student *next;
};
// addone 用于将一个数插入已从小到大排好序的链中
struct student *addone(struct student *h,int x){
if(h==NULL) //??????
- 《大型网站系统与Java中间件实践》第2章读后感
白糖_
java中间件
断断续续花了两天时间试读了《大型网站系统与Java中间件实践》的第2章,这章总述了从一个小型单机构建的网站发展到大型网站的演化过程---整个过程会遇到很多困难,但每一个屏障都会有解决方案,最终就是依靠这些个解决方案汇聚到一起组成了一个健壮稳定高效的大型系统。
看完整章内容,
- zeus持久层spring事务单元测试
deng520159
javaDAOspringjdbc
今天把zeus事务单元测试放出来,让大家指出他的毛病,
1.ZeusTransactionTest.java 单元测试
package com.dengliang.zeus.webdemo.test;
import java.util.ArrayList;
import java.util.List;
import org.junit.Test;
import
- Rss 订阅 开发
周凡杨
htmlxml订阅rss规范
RSS是 Really Simple Syndication的缩写(对rss2.0而言,是这三个词的缩写,对rss1.0而言则是RDF Site Summary的缩写,1.0与2.0走的是两个体系)。
RSS
- 分页查询实现
g21121
分页查询
在查询列表时我们常常会用到分页,分页的好处就是减少数据交换,每次查询一定数量减少数据库压力等等。
按实现形式分前台分页和服务器分页:
前台分页就是一次查询出所有记录,在页面中用js进行虚拟分页,这种形式在数据量较小时优势比较明显,一次加载就不必再访问服务器了,但当数据量较大时会对页面造成压力,传输速度也会大幅下降。
服务器分页就是每次请求相同数量记录,按一定规则排序,每次取一定序号直接的数据
- spring jms异步消息处理
510888780
jms
spring JMS对于异步消息处理基本上只需配置下就能进行高效的处理。其核心就是消息侦听器容器,常用的类就是DefaultMessageListenerContainer。该容器可配置侦听器的并发数量,以及配合MessageListenerAdapter使用消息驱动POJO进行消息处理。且消息驱动POJO是放入TaskExecutor中进行处理,进一步提高性能,减少侦听器的阻塞。具体配置如下:
- highCharts柱状图
布衣凌宇
hightCharts柱图
第一步:导入 exporting.js,grid.js,highcharts.js;第二步:写controller
@Controller@RequestMapping(value="${adminPath}/statistick")public class StatistickController { private UserServi
- 我的spring学习笔记2-IoC(反向控制 依赖注入)
aijuans
springmvcSpring 教程spring3 教程Spring 入门
IoC(反向控制 依赖注入)这是Spring提出来了,这也是Spring一大特色。这里我不用多说,我们看Spring教程就可以了解。当然我们不用Spring也可以用IoC,下面我将介绍不用Spring的IoC。
IoC不是框架,她是java的技术,如今大多数轻量级的容器都会用到IoC技术。这里我就用一个例子来说明:
如:程序中有 Mysql.calss 、Oracle.class 、SqlSe
- TLS java简单实现
antlove
javasslkeystoretlssecure
1. SSLServer.java
package ssl;
import java.io.FileInputStream;
import java.io.InputStream;
import java.net.ServerSocket;
import java.net.Socket;
import java.security.KeyStore;
import
- Zip解压压缩文件
百合不是茶
Zip格式解压Zip流的使用文件解压
ZIP文件的解压缩实质上就是从输入流中读取数据。Java.util.zip包提供了类ZipInputStream来读取ZIP文件,下面的代码段创建了一个输入流来读取ZIP格式的文件;
ZipInputStream in = new ZipInputStream(new FileInputStream(zipFileName));
&n
- underscore.js 学习(一)
bijian1013
JavaScriptunderscore
工作中需要用到underscore.js,发现这是一个包括了很多基本功能函数的js库,里面有很多实用的函数。而且它没有扩展 javascript的原生对象。主要涉及对Collection、Object、Array、Function的操作。 学
- java jvm常用命令工具——jstatd命令(Java Statistics Monitoring Daemon)
bijian1013
javajvmjstatd
1.介绍
jstatd是一个基于RMI(Remove Method Invocation)的服务程序,它用于监控基于HotSpot的JVM中资源的创建及销毁,并且提供了一个远程接口允许远程的监控工具连接到本地的JVM执行命令。
jstatd是基于RMI的,所以在运行jstatd的服务
- 【Spring框架三】Spring常用注解之Transactional
bit1129
transactional
Spring可以通过注解@Transactional来为业务逻辑层的方法(调用DAO完成持久化动作)添加事务能力,如下是@Transactional注解的定义:
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version
- 我(程序员)的前进方向
bitray
程序员
作为一个普通的程序员,我一直游走在java语言中,java也确实让我有了很多的体会.不过随着学习的深入,java语言的新技术产生的越来越多,从最初期的javase,我逐渐开始转变到ssh,ssi,这种主流的码农,.过了几天为了解决新问题,webservice的大旗也被我祭出来了,又过了些日子jms架构的activemq也开始必须学习了.再后来开始了一系列技术学习,osgi,restful.....
- nginx lua开发经验总结
ronin47
使用nginx lua已经两三个月了,项目接开发完毕了,这几天准备上线并且跟高德地图对接。回顾下来lua在项目中占得必中还是比较大的,跟PHP的占比差不多持平了,因此在开发中遇到一些问题备忘一下 1:content_by_lua中代码容量有限制,一般不要写太多代码,正常编写代码一般在100行左右(具体容量没有细心测哈哈,在4kb左右),如果超出了则重启nginx的时候会报 too long pa
- java-66-用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。颠倒之后的栈为{5,4,3,2,1},5处在栈顶
bylijinnan
java
import java.util.Stack;
public class ReverseStackRecursive {
/**
* Q 66.颠倒栈。
* 题目:用递归颠倒一个栈。例如输入栈{1,2,3,4,5},1在栈顶。
* 颠倒之后的栈为{5,4,3,2,1},5处在栈顶。
*1. Pop the top element
*2. Revers
- 正确理解Linux内存占用过高的问题
cfyme
linux
Linux开机后,使用top命令查看,4G物理内存发现已使用的多大3.2G,占用率高达80%以上:
Mem: 3889836k total, 3341868k used, 547968k free, 286044k buffers
Swap: 6127608k total,&nb
- [JWFD开源工作流]当前流程引擎设计的一个急需解决的问题
comsci
工作流
当我们的流程引擎进入IRC阶段的时候,当循环反馈模型出现之后,每次循环都会导致一大堆节点内存数据残留在系统内存中,循环的次数越多,这些残留数据将导致系统内存溢出,并使得引擎崩溃。。。。。。
而解决办法就是利用汇编语言或者其它系统编程语言,在引擎运行时,把这些残留数据清除掉。
- 自定义类的equals函数
dai_lm
equals
仅作笔记使用
public class VectorQueue {
private final Vector<VectorItem> queue;
private class VectorItem {
private final Object item;
private final int quantity;
public VectorI
- Linux下安装R语言
datageek
R语言 linux
命令如下:sudo gedit /etc/apt/sources.list1、deb http://mirrors.ustc.edu.cn/CRAN/bin/linux/ubuntu/ precise/ 2、deb http://dk.archive.ubuntu.com/ubuntu hardy universesudo apt-key adv --keyserver ke
- 如何修改mysql 并发数(连接数)最大值
dcj3sjt126com
mysql
MySQL的连接数最大值跟MySQL没关系,主要看系统和业务逻辑了
方法一:进入MYSQL安装目录 打开MYSQL配置文件 my.ini 或 my.cnf查找 max_connections=100 修改为 max_connections=1000 服务里重起MYSQL即可
方法二:MySQL的最大连接数默认是100客户端登录:mysql -uusername -ppass
- 单一功能原则
dcj3sjt126com
面向对象的程序设计软件设计编程原则
单一功能原则[
编辑]
SOLID 原则
单一功能原则
开闭原则
Liskov代换原则
接口隔离原则
依赖反转原则
查
论
编
在面向对象编程领域中,单一功能原则(Single responsibility principle)规定每个类都应该有
- POJO、VO和JavaBean区别和联系
fanmingxing
VOPOJOjavabean
POJO和JavaBean是我们常见的两个关键字,一般容易混淆,POJO全称是Plain Ordinary Java Object / Plain Old Java Object,中文可以翻译成:普通Java类,具有一部分getter/setter方法的那种类就可以称作POJO,但是JavaBean则比POJO复杂很多,JavaBean是一种组件技术,就好像你做了一个扳子,而这个扳子会在很多地方被
- SpringSecurity3.X--LDAP:AD配置
hanqunfeng
SpringSecurity
前面介绍过基于本地数据库验证的方式,参考http://hanqunfeng.iteye.com/blog/1155226,这里说一下如何修改为使用AD进行身份验证【只对用户名和密码进行验证,权限依旧存储在本地数据库中】。
将配置文件中的如下部分删除:
<!-- 认证管理器,使用自定义的UserDetailsService,并对密码采用md5加密-->
- mac mysql 修改密码
IXHONG
mysql
$ sudo /usr/local/mysql/bin/mysqld_safe –user=root & //启动MySQL(也可以通过偏好设置面板来启动)$ sudo /usr/local/mysql/bin/mysqladmin -uroot password yourpassword //设置MySQL密码(注意,这是第一次MySQL密码为空的时候的设置命令,如果是修改密码,还需在-
- 设计模式--抽象工厂模式
kerryg
设计模式
抽象工厂模式:
工厂模式有一个问题就是,类的创建依赖于工厂类,也就是说,如果想要拓展程序,必须对工厂类进行修改,这违背了闭包原则。我们采用抽象工厂模式,创建多个工厂类,这样一旦需要增加新的功能,直接增加新的工厂类就可以了,不需要修改之前的代码。
总结:这个模式的好处就是,如果想增加一个功能,就需要做一个实现类,
- 评"高中女生军训期跳楼”
nannan408
首先,先抛出我的观点,各位看官少点砖头。那就是,中国的差异化教育必须做起来。
孔圣人有云:有教无类。不同类型的人,都应该有对应的教育方法。目前中国的一体化教育,不知道已经扼杀了多少创造性人才。我们出不了爱迪生,出不了爱因斯坦,很大原因,是我们的培养思路错了,我们是第一要“顺从”。如果不顺从,我们的学校,就会用各种方法,罚站,罚写作业,各种罚。军
- scala如何读取和写入文件内容?
qindongliang1922
javajvmscala
直接看如下代码:
package file
import java.io.RandomAccessFile
import java.nio.charset.Charset
import scala.io.Source
import scala.reflect.io.{File, Path}
/**
* Created by qindongliang on 2015/
- C语言算法之百元买百鸡
qiufeihu
c算法
中国古代数学家张丘建在他的《算经》中提出了一个著名的“百钱买百鸡问题”,鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一,百钱买百鸡,问翁,母,雏各几何?
代码如下:
#include <stdio.h>
int main()
{
int cock,hen,chick; /*定义变量为基本整型*/
for(coc
- Hadoop集群安全性:Hadoop中Namenode单点故障的解决方案及详细介绍AvatarNode
wyz2009107220
NameNode
正如大家所知,NameNode在Hadoop系统中存在单点故障问题,这个对于标榜高可用性的Hadoop来说一直是个软肋。本文讨论一下为了解决这个问题而存在的几个solution。
1. Secondary NameNode
原理:Secondary NN会定期的从NN中读取editlog,与自己存储的Image进行合并形成新的metadata image
优点:Hadoop较早的版本都自带,