- Python爬虫实战:研究flanker相关技术
ylfhpy
爬虫项目实战python爬虫开发语言flanker
1.引言1.1研究背景与意义在当今信息爆炸的时代,互联网上的数据量呈现出指数级增长的趋势。如何从海量的网页数据中高效地获取有价值的信息,成为了一个重要的研究课题。网络爬虫作为一种自动获取网页内容的技术,能够帮助用户快速、准确地收集所需的信息,因此在信息检索、数据挖掘、舆情分析等领域得到了广泛的应用。Flanker技术是一种基于文本分析的信息提取技术,它能够从非结构化的文本中识别和提取出特定类型的信
- 大数据与社交媒体:非结构化数据的挖掘技术
AI大数据智能洞察
大数据媒体ai
大数据与社交媒体:非结构化数据的挖掘技术——像整理玩具箱一样找“隐藏的宝藏”关键词:非结构化数据、社交媒体挖掘、文本分析、情感识别、图挖掘、大数据处理、自然语言处理摘要:社交媒体就像一个装满“杂乱玩具”的超级仓库——里面有朋友圈的文字、抖音的视频、微博的评论,这些“玩具”没有固定的盒子(结构),却藏着关于人们情绪、兴趣、关系的珍贵信息。本文用“整理玩具箱”的类比,一步步拆解非结构化数据的本质、大数
- 掌握正则表达式:在Python中检测重复词的实战演练
Kimgoeunlaogong
本文还有配套的精品资源,点击获取简介:正则表达式是IT领域中用于文本处理的强大工具,本示例将介绍如何使用正则表达式检测字符串中的重复词,这在数据清洗、文本分析和日志处理等场景下非常有用。通过Python的re模块,我们将详细介绍检测重复词的步骤,包括字符串的处理、单词频率的统计以及重复词的筛选和输出。同时,解释如何使用不同的正则表达式元字符和修饰符来满足特定需求,例如不区分大小写或处理特殊字符。此
- Apache Tika入门
野生开发者
#Java
文章目录1、基本介绍2、Tika使用2.1、解析器接口(TheParserinterface)2.1.1、自定义Parser类2.2、检测器接口2.3、Tika配置1、基本介绍ApacheTika(文本分析工具包)能够检测并提取来自上千种不同文件类型(如PPT、XLS和PDF)的元数据和文本;所有这些文件类型都可以通过一个接口进行解析,这使得Tika在搜索引擎索引、内容分析、翻译等方面非常有用。2
- PPT处理控件Aspose功能演示:使用C#从PowerPoint文件中提取文本
Lee-Shyllen
Aspose文档开发文档管理asposePPT文档开发文档处理
有时需要从PowerPoint幻灯片中提取文本以执行文本分析。另一方面,可能需要提取文本并将其保存在文件或数据库中以进行进一步处理。因此,本文介绍了如何使用C#从PowerPoint演示文稿中提取文本。特别是,将学习如何从特定的幻灯片或整个演示文稿中提取文本。从PowerPoint幻灯片中提取文本从PowerPoint演示文稿中提取文本为了处理PowerPoint演示文稿,Aspose提供Aspo
- [特殊字符] Python 实战 | 批量统计中文文档词频并导出 Excel
happydog007
python自动化办公python开发语言
本文展示如何用Python脚本:批量读取文件夹中的多篇中文文档;用jieba分词并统计词频(过滤停用词与单字符);将各文档词频输出为对应Excel文件;是文本分析、内容审查、报告编写中的实用技巧。Step1:批量加载文件夹中文本文件路径importospath='主要业务'files=[os.path.join(path,f)forfinos.listdir(path)]使用标准库os.listd
- 使用Python爬虫与自然语言处理技术抓取并分析网页内容
Python爬虫项目
python爬虫自然语言处理javascript数据分析人工智能
1.引言在如今数据驱动的时代,网页爬虫(WebScraping)和自然语言处理(NLP)已成为处理大量网页数据的重要工具。利用Python爬虫抓取网页内容,结合NLP技术进行文本分析和信息抽取,能够从大量网页中提取有价值的信息。无论是新闻文章的情感分析、社交媒体的舆情分析,还是电商网站的商品评论挖掘,这些技术都发挥着至关重要的作用。本文将介绍如何利用Python爬虫与自然语言处理技术抓取并分析网页
- 如果用于AI评课系统的话——五款智能体比较
东方-教育技术博主
人工智能应用人工智能
你目前的项目特点是:已经具备了课堂文本分析、大模型对话系统、课堂视频分析的技术模块;计划通过智能体调用你现有的Python分析脚本,实现数据分析、自动可视化,并与教师互动;更强调多智能体协作、流程灵活编排,以及循证研究的交互分析。因此,我们重点考量生态成熟度、流程编排能力、多智能体协作能力、易用性四个维度。下面逐个分析你提到的框架:智能体框架综合对比分析:框架生态成熟度多智能体能力流程编排能力易用
- Python爬虫实战:研究jieba相关技术
ylfhpy
爬虫项目实战python爬虫开发语言htmljieba分词
1.引言1.1研究背景与意义随着互联网技术的飞速发展,网络新闻已成为人们获取信息的主要渠道之一。每天产生的新闻文本数据量呈爆炸式增长,如何从海量文本中高效提取有价值的信息,成为信息科学领域的重要研究课题。文本分析技术通过对文本内容的结构化处理和语义挖掘,能够揭示隐藏在文本中的主题、情感和趋势,为舆情监测、信息检索、内容推荐等应用提供技术支持。1.2研究目标与方法本研究旨在构建一个完整的新闻文本分析
- Fastapi+Celery实现异步回调
现实、狠残酷
项目部署fastapi
这里写目录标题场景简介(模拟大模型调用):一、准备工作二、FastAPI+Celery项目结构三、项目代码test_client.pymain.pytasks.pytest.py四、测试流程场景简介(模拟大模型调用):用户请求接口/analyze,传入一个文本;FastAPI处理后,用Celery异步任务模拟调用大模型进行文本分析;分析完成后,调用用户提供的回调地址(比如/callback)并把分
- Linux文本处理三剑客实战指南:grep、sed、awk
目录三剑客简介与对比grep:文本搜索利器✂️sed:流编辑与批量替换awk:文本分析与格式化输出⚔️易混辨析与命令对比实战案例集锦高频面试问答️进阶技巧与最佳实践三剑客组合实战常见错误与排查建议1.三剑客简介与对比grep:按模式搜索文本,输出匹配行,适合快速查找和过滤。sed:流编辑器,支持查找、替换、插入、删除等批量文本处理。awk:强大的文本分析与报告生成工具,支持条件判断、格式化输出、统
- 从理论到实践:情感分析如何提升量化价值投资收益率?
量化价值投资入门到精通
ai
从理论到实践:情感分析如何提升量化价值投资收益率?关键词:情感分析、量化价值投资、自然语言处理、投资组合优化、收益率提升、金融文本分析、量化策略摘要:本文系统解析情感分析技术在量化价值投资中的理论基础与实践路径。首先构建情感分析与价值投资的理论关联模型,揭示金融文本情感数据对资产定价的影响机制。其次通过数学建模和算法实现,演示如何将情感得分嵌入经典量化模型(如CAPM、Black-Litterma
- python 英语词频统计软件_Python文本分析基本库——wordcloud
Andy Kwong
python英语词频统计软件
一、wordcloud简介词云,又称文字云、标签云,是对文本数据中出现频率较高的“关键词”在视觉上的突出呈现,形成关键词的渲染形成类似云一样的彩色图片,从而一眼就可以领略文本数据的主要表达意思。创建于文本分析及其可视化中。除了网上现成的Wordle、Tagxedo、Tagul、Tagcrowd等词云制作工具,在python中也可以用wordcloud包比较轻松地实现。官网:https://pypi
- Python实现小说词频统计
I_Scholar
pythonwindows开发语言
源码地址:python实现小说词频统计资源-CSDN文库这段代码实现了一个简单的文本分析工具,主要用于统计用户指定的词语在小说中的出现次数、位置和频次。以下是代码的详细解析和功能说明:1.功能概述选择文件:通过文件对话框选择一个小说文件。读取文件内容:将小说文件的内容读取到一个字符串中。去除标点符号:从文本中去除指定的标点符号。统计词频:统计用户指定的词语在小说中的出现次数、位置和频次。输出结果:
- Python,Go开发专利申请与代理APP
Geeker-2025
pythongolang
#专利申请与代理管理系统-Python&Go实现方案我将设计一个完整的专利申请与代理管理系统,结合Python和Go的优势,提供从申请到管理的全流程解决方案。##设计思路这个应用将包含:-Python用于专利文本分析、自然语言处理和文档生成-Go用于构建高性能API服务和任务调度-前端使用React构建响应式界面-数据存储在PostgreSQL和Elasticsearch中```htmlPaten
- 大模型——Dify 与 Browser-use 结合使用
不二人生
大模型人工智能difyBrowser-use
大模型——Dify与Browser-use结合使用Dify与Browser-use的结合使用,能够通过AI决策与自动化交互的协同,构建智能化、场景化的业务流程。以下是两者的整合思路与技术落地方案:一、核心组合逻辑分工定位Dify:作为AI模型调度中枢,负责自然语言理解、决策生成、数据处理(如文本分析、意图识别、动态指令生成)。Browser-use:作为执行终端,按Dify输出的结构化指令模拟人类
- R语言非结构化文本挖掘入门指南
Morpheon
Rr语言开发语言
文本挖掘(TextMining),也称为文本分析(TextAnalytics),是从非结构化文本数据中提取有意义的见解。全球约80%的数据是非结构化的。本篇博客将探讨文本挖掘和网络爬取的关键概念及基于R的实用技术。什么是文本挖掘?文本挖掘利用计算技术从非结构化文本源(如书籍、报告、文章、博客和社交媒体帖子)中提取结构化信息。它能够自动化地从海量数据集中发现知识,实现文本摘要和分析。关键点:非结构化
- 5分钟了解AI原生应用中的自然语言处理原理
AGI大模型与大数据研究院
AI-native自然语言处理easyuiai
5分钟了解AI原生应用中的自然语言处理原理关键词:AI原生应用、自然语言处理、语言理解、语言生成、文本分析摘要:本文将带领大家在5分钟左右的时间里,了解AI原生应用中自然语言处理的原理。我们会用简单易懂的语言,像讲故事一样,从背景知识开始,深入解释核心概念、算法原理、数学模型,还会通过项目实战和实际应用场景来加深理解,最后探讨未来发展趋势与挑战,让大家对自然语言处理有一个清晰的认识。背景介绍目的和
- Python生成词云图实战教程
小虾汉斯
本文还有配套的精品资源,点击获取简介:Python中的词云图生成是一项重要技能,它通过可视化展示文本数据中词汇的频率。本教程包含Python源码实例,教授如何使用wordcloud库来生成词云图,涵盖了自定义形状、调整词频权重、过滤停用词等高级定制功能。实例将引导读者通过实际操作来理解和掌握词云图的生成过程,同时提供了在数据可视化和文本分析中的应用示例。1.Python词云图生成生成词云图是数据分
- 基于bert预训练模型transformer架构的中文文本多标签分类的双向语义理解。
基于bert预训练模型transformer架构的中文文本多标签分类的双向语义理解。文章目录1.安装必要的库2.数据准备3.模型定义4.训练模型5.评估模型6.部署与应用概述:BERT多标签中文文本分类系统是一款先进的自然语言处理工具,专为中文文本分析和多标签分类设计。该系统利用BERT模型的强大能力,能够精确地对中文文本进行多维度的标签分类,广泛应用于内容管理、信息检索、情感分析等领域。主要特性
- 使用 Python 构建知识图谱(教程含源码)
知识大胖
NVIDIAGPU和大语言模型开发教程Python源码大全python知识图谱开发语言
介绍这篇文章概述了使用Python构建知识图谱的全面方法,重点介绍文本分析技术,例如命名实体识别(NER)、句法分析和关系提取。它详细介绍了清理和预处理文本、识别关键实体及其关系以及将数据可视化为结构化图的过程。该方法利用Spacy等库进行NER和大型语言模型(LLM)进行关系提取。该文档还提供了用于实现这些技术的代码片段和示例,强调了事件检测和共现分析在生成富有洞察力的知识图谱方面的重要性。最后
- EMNLP 2017 北京论文报告会笔记
ljtyxl
NLP
16号在北京举办的,邀请了国内部分被录用论文的作者来报告研究成果,整场报告会分为文本摘要及情感分析、机器翻译、信息抽取及自动问答、文本分析及表示学习四个部分。感觉上次的CCF-GAIR参会笔记写的像流水账,这次换一种方式做笔记。分为四个部分,并没有包含分享的所有论文。第一部分写我最喜欢的论文,第二部分总结一些以模型融合为主要方法的论文,第三部分总结一些对模型组件进行微调的论文,第四部分是类似旧瓶装
- 使用Python生成词云,分析政府工作报告热词
Auroraꦿ᭄²º²⁴
python开发语言软件工程
引言:在这篇博客中,我将分享如何使用Python进行文本数据的分析与可视化,具体来说,将从“政府工作报告”提取的文本中分析热词,并且生成词云图像。这不仅可以帮助我们直观了解报告中的高频关键词,还为文本分析提供了一个良好的例子。实现思路:文本数据分析的基本步骤包括以下几点:读取文本:首先需要读取文本数据。可以从一个存储纯文本的文件中读取你需要分析的文本。数据预处理:这一步包括去除非汉字字符,确保我们
- 使用Python安装jieba库
qq_39605374
python开发语言Python
jieba是一个流行的中文分词库,用于将中文文本切分成单个词语。它是在Python中进行自然语言处理和文本分析时的常用工具之一。本文将介绍如何在Python中安装jieba库,并提供相应的源代码。安装jieba库的步骤如下:步骤1:安装Python首先,确保你已经安装了Python。jieba库兼容Python2.7和Python3.x版本。你可以从Python官方网站(https://www.p
- MATLAB文本处理与自然语言处理方法
vipfanxu
matlab自然语言处理开发语言
自然语言处理(NaturalLanguageProcessing,简称NLP)是人工智能领域中的重要分支之一,它涉及到对自然语言的理解、生成、应用等多个方面。而MATLAB作为一种功能强大的编程语言和开发环境,也可以被用于文本处理和NLP任务。本文将介绍MATLAB中常用的文本处理和NLP方法,包括文本预处理、词袋模型、文本分类和情感分析等内容。一、文本预处理在进行文本分析之前,我们通常需要对文本
- 使用DashScope的嵌入模型进行文本嵌入
azzxcvhj
python
在自然语言处理(NLP)和机器学习领域,文本嵌入已经成为一种非常流行且实用的技术。有了文本嵌入,我们可以将文本数据转换为数值向量,这对于实现高级的文本分析和处理功能如文本分类、聚类、信息检索等非常关键。本文将带你深入了解如何使用DashScope的嵌入模型来实现文本嵌入。技术背景介绍DashScope是一款高效且易用的NLP服务提供商,它提供了多种模型用于文本嵌入、生成等常见NLP任务。使用这些嵌
- Python文本词频分析实战:打造你的第一个NLP小工具
笨笨轻松熊
《挑战全网最肝Python教程100个项目》python自然语言处理
打造你的第一个NLP小工具编程基础第一期《4-30》实现统计文本文件单词频率(.txt)前言文本分析是自然语言处理(NLP)中的基础任务,而词频统计则是文本分析的入门级应用。通过词频分析,我们可以快速了解文本的主题倾向、关键信息分布以及语言使用习惯。本文将带你实现一个简单而实用的文本词频统计工具,非常适合Python初学者练手。功能特点支持任意.txt格式文本文件的词频分析自动处理文本编码问题使用
- python 文本分析库_Python有趣|中文文本情感分析
weixin_39972019
python文本分析库
前言前文给大家说了python机器学习的路径,这光说不练假把式,这次,罗罗攀就带大家完成一个中文文本情感分析的机器学习项目,今天的流程如下:数据情况和处理数据情况这里的数据为大众点评上的评论数据(王树义老师提供),主要就是评论文字和打分。我们首先读入数据,看下数据的情况:importnumpyasnpimportpandasaspddata=pd.read_csv('data1.csv')data
- 【论文分享】基于社交媒体分析洞察市民的城市绿地文化生态系统服务体验
城市数据研习社
媒体数据分析大数据算法
本次给大家带来一篇SCI论文的全文翻译!该论文针对上海的50个UGS地点,建立了一个感知词典来聚类CES,并通过文本分析研究了景观元素对市民情感的影响。【论文题目】Insightsintocitizens’experiencesofculturalecosystemservicesinurbangreenspacesbasedonsocialmediaanalytics【题目翻译】基于社交媒体分析
- 从0开始学习大模型--Day08--langchain架构
Chef_Chen
学习langchain人工智能
langchain基本概念langchain是一种专门用于文本分析的先进链式处理工具,在如今这个数据爆炸式增长的时代,很多复杂的数据难以得到处理,而如果以人为的方式去处理,所需要耗费的人力,物力以及时间成本有太大,得不偿失。langchain可以为用户提供友好的可视化交互式界面和高度定制化的分析选项,降低了操作的难度和对专业能力的要求。同时由于其在数据处理和分析方面的创新性,其是在机器学习和数据分
- 用MiddleGenIDE工具生成hibernate的POJO(根据数据表生成POJO类)
AdyZhang
POJOeclipseHibernateMiddleGenIDE
推荐:MiddlegenIDE插件, 是一个Eclipse 插件. 用它可以直接连接到数据库, 根据表按照一定的HIBERNATE规则作出BEAN和对应的XML ,用完后你可以手动删除它加载的JAR包和XML文件! 今天开始试着使用
- .9.png
Cb123456
android
“点九”是andriod平台的应用软件开发里的一种特殊的图片形式,文件扩展名为:.9.png
智能手机中有自动横屏的功能,同一幅界面会在随着手机(或平板电脑)中的方向传感器的参数不同而改变显示的方向,在界面改变方向后,界面上的图形会因为长宽的变化而产生拉伸,造成图形的失真变形。
我们都知道android平台有多种不同的分辨率,很多控件的切图文件在被放大拉伸后,边
- 算法的效率
天子之骄
算法效率复杂度最坏情况运行时间大O阶平均情况运行时间
算法的效率
效率是速度和空间消耗的度量。集中考虑程序的速度,也称运行时间或执行时间,用复杂度的阶(O)这一标准来衡量。空间的消耗或需求也可以用大O表示,而且它总是小于或等于时间需求。
以下是我的学习笔记:
1.求值与霍纳法则,即为秦九韶公式。
2.测定运行时间的最可靠方法是计数对运行时间有贡献的基本操作的执行次数。运行时间与这个计数成正比。
- java数据结构
何必如此
java数据结构
Java 数据结构
Java工具包提供了强大的数据结构。在Java中的数据结构主要包括以下几种接口和类:
枚举(Enumeration)
位集合(BitSet)
向量(Vector)
栈(Stack)
字典(Dictionary)
哈希表(Hashtable)
属性(Properties)
以上这些类是传统遗留的,在Java2中引入了一种新的框架-集合框架(Collect
- MybatisHelloWorld
3213213333332132
//测试入口TestMyBatis
package com.base.helloworld.test;
import java.io.IOException;
import org.apache.ibatis.io.Resources;
import org.apache.ibatis.session.SqlSession;
import org.apache.ibat
- Java|urlrewrite|URL重写|多个参数
7454103
javaxmlWeb工作
个人工作经验! 如有不当之处,敬请指点
1.0 web -info 目录下建立 urlrewrite.xml 文件 类似如下:
<?xml version="1.0" encoding="UTF-8" ?>
<!DOCTYPE u
- 达梦数据库+ibatis
darkranger
sqlmysqlibatisSQL Server
--插入数据方面
如果您需要数据库自增...
那么在插入的时候不需要指定自增列.
如果想自己指定ID列的值, 那么要设置
set identity_insert 数据库名.模式名.表名;
----然后插入数据;
example:
create table zhabei.test(
id bigint identity(1,1) primary key,
nam
- XML 解析 四种方式
aijuans
android
XML现在已经成为一种通用的数据交换格式,平台的无关性使得很多场合都需要用到XML。本文将详细介绍用Java解析XML的四种方法。
XML现在已经成为一种通用的数据交换格式,它的平台无关性,语言无关性,系统无关性,给数据集成与交互带来了极大的方便。对于XML本身的语法知识与技术细节,需要阅读相关的技术文献,这里面包括的内容有DOM(Document Object
- spring中配置文件占位符的使用
avords
1.类
<?xml version="1.0" encoding="UTF-8"?><!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.o
- 前端工程化-公共模块的依赖和常用的工作流
bee1314
webpack
题记: 一个人的项目,还有工程化的问题嘛? 我们在推进模块化和组件化的过程中,肯定会不断的沉淀出我们项目的模块和组件。对于这些沉淀出的模块和组件怎么管理?另外怎么依赖也是个问题? 你真的想这样嘛? var BreadCrumb = require(‘../../../../uikit/breadcrumb’); //真心ugly。
- 上司说「看你每天准时下班就知道你工作量不饱和」,该如何回应?
bijian1013
项目管理沟通IT职业规划
问题:上司说「看你每天准时下班就知道你工作量不饱和」,如何回应
正常下班时间6点,只要是6点半前下班的,上司都认为没有加班。
Eno-Bea回答,注重感受,不一定是别人的
虽然我不知道你具体从事什么工作与职业,但是我大概猜测,你是从事一项不太容易出现阶段性成果的工作
- TortoiseSVN,过滤文件
征客丶
SVN
环境:
TortoiseSVN 1.8
配置:
在文件夹空白处右键
选择 TortoiseSVN -> Settings
在 Global ignote pattern 中添加要过滤的文件:
多类型用英文空格分开
*name : 过滤所有名称为 name 的文件或文件夹
*.name : 过滤所有后缀为 name 的文件或文件夹
--------
- 【Flume二】HDFS sink细说
bit1129
Flume
1. Flume配置
a1.sources=r1
a1.channels=c1
a1.sinks=k1
###Flume负责启动44444端口
a1.sources.r1.type=avro
a1.sources.r1.bind=0.0.0.0
a1.sources.r1.port=44444
a1.sources.r1.chan
- The Eight Myths of Erlang Performance
bookjovi
erlang
erlang有一篇guide很有意思: http://www.erlang.org/doc/efficiency_guide
里面有个The Eight Myths of Erlang Performance: http://www.erlang.org/doc/efficiency_guide/myths.html
Myth: Funs are sl
- java多线程网络传输文件(非同步)-2008-08-17
ljy325
java多线程socket
利用 Socket 套接字进行面向连接通信的编程。客户端读取本地文件并发送;服务器接收文件并保存到本地文件系统中。
使用说明:请将TransferClient, TransferServer, TempFile三个类编译,他们的类包是FileServer.
客户端:
修改TransferClient: serPort, serIP, filePath, blockNum,的值来符合您机器的系
- 读《研磨设计模式》-代码笔记-模板方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.PreparedStatement;
import java.sql.ResultSet;
- 配置心得
chenyu19891124
配置
时间就这样不知不觉的走过了一个春夏秋冬,转眼间来公司已经一年了,感觉时间过的很快,时间老人总是这样不停走,从来没停歇过。
作为一名新手的配置管理员,刚开始真的是对配置管理是一点不懂,就只听说咱们公司配置主要是负责升级,而具体该怎么做却一点都不了解。经过老员工的一点点讲解,慢慢的对配置有了初步了解,对自己所在的岗位也慢慢的了解。
做了一年的配置管理给自总结下:
1.改变
从一个以前对配置毫无
- 对“带条件选择的并行汇聚路由问题”的再思考
comsci
算法工作软件测试嵌入式领域模型
2008年上半年,我在设计并开发基于”JWFD流程系统“的商业化改进型引擎的时候,由于采用了新的嵌入式公式模块而导致出现“带条件选择的并行汇聚路由问题”(请参考2009-02-27博文),当时对这个问题的解决办法是采用基于拓扑结构的处理思想,对汇聚点的实际前驱分支节点通过算法预测出来,然后进行处理,简单的说就是找到造成这个汇聚模型的分支起点,对这个起始分支节点实际走的路径数进行计算,然后把这个实际
- Oracle 10g 的clusterware 32位 下载地址
daizj
oracle
Oracle 10g 的clusterware 32位 下载地址
http://pan.baidu.com/share/link?shareid=531580&uk=421021908
http://pan.baidu.com/share/link?shareid=137223&uk=321552738
http://pan.baidu.com/share/l
- 非常好的介绍:Linux定时执行工具cron
dongwei_6688
linux
Linux经过十多年的发展,很多用户都很了解Linux了,这里介绍一下Linux下cron的理解,和大家讨论讨论。cron是一个Linux 定时执行工具,可以在无需人工干预的情况下运行作业,本文档不讲cron实现原理,主要讲一下Linux定时执行工具cron的具体使用及简单介绍。
新增调度任务推荐使用crontab -e命令添加自定义的任务(编辑的是/var/spool/cron下对应用户的cr
- Yii assets目录生成及修改
dcj3sjt126com
yii
assets的作用是方便模块化,插件化的,一般来说出于安全原因不允许通过url访问protected下面的文件,但是我们又希望将module单独出来,所以需要使用发布,即将一个目录下的文件复制一份到assets下面方便通过url访问。
assets设置对应的方法位置 \framework\web\CAssetManager.php
assets配置方法 在m
- mac工作软件推荐
dcj3sjt126com
mac
mac上的Terminal + bash + screen组合现在已经非常好用了,但是还是经不起iterm+zsh+tmux的冲击。在同事的强烈推荐下,趁着升级mac系统的机会,顺便也切换到iterm+zsh+tmux的环境下了。
我为什么要要iterm2
切换过来也是脑袋一热的冲动,我也调查过一些资料,看了下iterm的一些优点:
* 兼容性好,远程服务器 vi 什么的低版本能很好兼
- Memcached(三)、封装Memcached和Ehcache
frank1234
memcachedehcachespring ioc
本文对Ehcache和Memcached进行了简单的封装,这样对于客户端程序无需了解ehcache和memcached的差异,仅需要配置缓存的Provider类就可以在二者之间进行切换,Provider实现类通过Spring IoC注入。
cache.xml
<?xml version="1.0" encoding="UTF-8"?>
- Remove Duplicates from Sorted List II
hcx2013
remove
Given a sorted linked list, delete all nodes that have duplicate numbers, leaving only distinct numbers from the original list.
For example,Given 1->2->3->3->4->4->5,
- Spring4新特性——注解、脚本、任务、MVC等其他特性改进
jinnianshilongnian
spring4
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- MySQL安装文档
liyong0802
mysql
工作中用到的MySQL可能安装在两种操作系统中,即Windows系统和Linux系统。以Linux系统中情况居多。
安装在Windows系统时与其它Windows应用程序相同按照安装向导一直下一步就即,这里就不具体介绍,本文档只介绍Linux系统下MySQL的安装步骤。
Linux系统下安装MySQL分为三种:RPM包安装、二进制包安装和源码包安装。二
- 使用VS2010构建HotSpot工程
p2p2500
HotSpotOpenJDKVS2010
1. 下载OpenJDK7的源码:
http://download.java.net/openjdk/jdk7
http://download.java.net/openjdk/
2. 环境配置
▶
- Oracle实用功能之分组后列合并
seandeng888
oracle分组实用功能合并
1 实例解析
由于业务需求需要对表中的数据进行分组后进行合并的处理,鉴于Oracle10g没有现成的函数实现该功能,且该功能如若用JAVA代码实现会比较复杂,因此,特将SQL语言的实现方式分享出来,希望对大家有所帮助。如下:
表test 数据如下:
ID,SUBJECTCODE,DIMCODE,VALUE
1&nbs
- Java定时任务注解方式实现
tuoni
javaspringjvmxmljni
Spring 注解的定时任务,有如下两种方式:
第一种:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi="http
- 11大Java开源中文分词器的使用方法和分词效果对比
yangshangchuan
word分词器ansj分词器Stanford分词器FudanNLP分词器HanLP分词器
本文的目标有两个:
1、学会使用11大Java开源中文分词器
2、对比分析11大Java开源中文分词器的分词效果
本文给出了11大Java开源中文分词的使用方法以及分词结果对比代码,至于效果哪个好,那要用的人结合自己的应用场景自己来判断。
11大Java开源中文分词器,不同的分词器有不同的用法,定义的接口也不一样,我们先定义一个统一的接口:
/**
* 获取文本的所有分词结果, 对比