- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- 【Jupyter】个人开发常见命令
TIM老师
#Pycharm&VSCodepythonJupyter
1.查看python版本importsysprint(sys.version)2.ipynb/py文件转换jupyternbconvert--topythonmy_file.ipynbipynb转换为mdjupyternbconvert--tomdmy_file.ipynbipynb转为htmljupyternbconvert--tohtmlmy_file.ipynbipython转换为pdfju
- 数据中台中的数据科学工作台:Jupyter集成方案
AI大数据智能洞察
大数据与AI人工智能jupyter信息可视化ideai
数据中台中的数据科学工作台:Jupyter集成方案关键词:数据中台、数据科学工作台、JupyterNotebook、数据科学、机器学习、数据可视化、协作开发摘要:本文深入探讨了在数据中台架构中集成JupyterNotebook作为数据科学工作台的完整解决方案。我们将从数据中台的基本概念出发,详细分析Jupyter在数据科学工作流中的核心作用,介绍多种集成方案和技术实现细节,并通过实际案例展示如何构
- Jupyter Notebook:数据科学的“瑞士军刀”
a小胡哦
机器学习基础人工智能机器学习
在数据科学的世界里,JupyterNotebook是一个不可或缺的工具,它就像是数据科学家手中的“瑞士军刀”,功能强大且灵活多变。今天,就让我们一起深入了解这个神奇的工具。一、JupyterNotebook是什么?JupyterNotebook是一个开源的Web应用程序,它允许你创建和共享包含实时代码、方程、可视化和解释性文本的文档。它支持多种编程语言,其中Python是最常用的语言之一。Jupy
- Spark SQL架构及高级用法
Aurora_NeAr
sparksql架构
SparkSQL架构概述架构核心组件API层(用户接口)输入方式:SQL查询;DataFrame/DatasetAPI。统一性:所有接口最终转换为逻辑计划树(LogicalPlan),进入优化流程。编译器层(Catalyst优化器)核心引擎:基于规则的优化器(Rule-BasedOptimizer,RBO)与成本优化器(Cost-BasedOptimizer,CBO)。处理流程:阶段输入输出关键动
- Hive详解
一:Hive的历史价值1,Hive是Hadoop上的KillerApplication,Hive是Hadoop上的数据仓库,Hive同时兼具有数据仓库中的存储引擎和查询引擎的作用;而SparkSQL是一个更加出色和高级的查询引擎,所以在现在企业级应用中SparkSQL+Hive成为了业界使用大数据最为高效和流行的趋势。2,Hive是Facebook的推出,主要是为了让不动Java代码编程的人员也能
- 全面对比,深度解析 Ignite 与 Spark
xaio7biancheng
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- ignite redis_全面对比,深度解析 Ignite 与 Spark
weixin_39997696
igniteredis
经常有人拿Ignite和Spark进行比较,然后搞不清两者的区别和联系。Ignite和Spark,如果笼统归类,都可以归于内存计算平台,然而两者功能上虽然有交集,并且Ignite也会对Spark进行支持,但是不管是从定位上,还是从功能上来说,它们差别巨大,适用领域有显著的区别。本文从各个方面对此进行对比分析,供各位技术选型参考。一、综述Ignite和Spark都为Apache的顶级开源项目,遵循A
- Anaconda插件开发挑战赛
张文6.7
人工智能开发语言区块链AI编程
引言介绍Anaconda在数据科学和Python开发中的重要性插件生态系统的价值与Anaconda插件开发的意义概述挑战赛的目标与参赛者的预期收获Anaconda插件开发基础Anaconda平台的核心功能与插件架构开发环境搭建:AnacondaDistribution、conda与相关工具链插件类型与常见应用场景(如Jupyter扩展、IDE集成、数据可视化工具等)挑战赛关键技术要点插件开发的核心
- 常见的未授权访问如:Redis,MongoDb,Memcached,Jenkins,Jupyter NoteBook,Elasticsearch,Kibana等二十四个靶场复现
终焉暴龙王
安全网络web安全
前言这这篇文章中我会记录24种常见的未授权访问漏洞的靶场复现,如果有错误,欢迎大家指正。在本文中,漏洞复现的靶场完全是靠自己搭建的vulhub-master以及一系列的靶场以及fofa搜索,如果之前没有用过vulhub-master靶场,请先搭建好vulhub-master靶场并且安装docker和docker-compose。另外,其中一些涉及到敏感信息的漏洞复现我就不截图了,大家切记要树立好法
- 数据写入因为汉字引发的异常
qq_40841339
sparkhadoophivehivehadoop数据仓库
spark数据写hive表,发生查询分区异常问题异常:251071241926.49ERRORHive:MelaException(message.Exceptionthrownwhenexeculingquey.SELECTDISTINCT‘orgapache.hadop.hivemelastore.modelMpartionAs"NUCLEUSTYPE,AONCREATETIME,AO.LAS
- 语言合成模型Spark-TTS-0.5B学习笔记
tutgxuzyj
spark学习笔记
语言合成模型Spark-TTS-0.5B学习笔记语言合成是通过计算机技术将文字信息转换为自然流畅的语音输出,模拟人类语音。一、下载Spark-TTS-0.5B项目下载链接:https://github.com/SparkAudio/Spark-TTS.git注:需要科学网络。进入Spark-TTS文件夹,启动命令行窗口。创建Conda环境:condacreate-nsparktts-ypython
- Spark-TTS 使用
时间自由
AI人工智能
1.开发背景上一章节使用了MegaTTS3实现文本转语音,但是后面才发现只能使用官方的语言包,没看到克隆功能,所以重新找了一个可以克隆语音的开源模型。2.开发需求在Ubuntu下实现Spark-TTS的部署,实现官方语音克隆,根据自定义文本输出语音。3.开发环境Ubuntu20.04+Conda+Spark-TTS+RTX5060TI4.实现步骤4.1安装环境#创建环境python版本建议3.10
- Spark 的监控和性能调优高度依赖其内置的工具:【 Spark Web UI 和 Spark History Server】
csdn_tom_168
大数据spark大数据核心监控性能调优工具
Spark的监控和性能调优高度依赖其内置的SparkWebUI和SparkHistoryServer。它们是诊断作业性能瓶颈、资源利用率、错误原因和优化机会的最重要工具。一、SparkWebUI(DriverWebUI)当一个Spark应用程序(SparkContext)运行时,Driver进程会启动一个Web服务器,默认端口是4040(如果4040被占用,则尝试4041,4042等)。这是实时监
- 黑猴子的家:Spark RDD 编程进阶 之 广播变量
黑猴子的家
广播变量用来高效分发较大的对象。向所有工作节点发送一个较大的只读值,以供一个或多个Spark操作使用。比如,如果你的应用需要向所有节点发送一个较大的只读查询表,甚至是机器学习算法中的一个很大的特征向量,广播变量用起来都很顺手。传统方式下,Spark会自动把闭包中所有引用到的变量发送到工作节点上。虽然这很方便,但也很低效。原因有二:首先,默认的任务发射机制是专门为小任务进行优化的;其次,事实上你可能
- 开源项目ESP-SparkBot: ESP32-S3 大模型 AI 桌面机器人(复刻分享)
Qsm_lambda
机器人aiAI编程
一、前言ESP-SparkBot是官方大佬,乐鑫小铁匠开源在立创开源硬件平台的项目,此贴是用于分享与记录复刻过程。开源地址:(ESP-SparkBot-立创开源硬件平台(oshwhub.com))千人讨论Q群362367052二、项目简介ESP-SparkBot是⼀款基于ESP32-S3,集成语⾳交互、图像识别、遥控操作和多媒体功能于⼀体的智能设备。它不仅可以通过语⾳助⼿实现
- 创建全景图像的完整指南:Make-Panorama-Image实战教程
色空空色
本文还有配套的精品资源,点击获取简介:在IT领域,全景图像创建技术用于合并多张连续拍摄的照片以获得宽广视角。本教程将介绍使用Python和JupyterNotebook实现全景图像生成的步骤,包括图像对齐、融合、扭曲校正和裁剪调整。通过学习OpenCV、PIL/Pillow和scikit-image等库的使用,你将掌握创建和处理全景图像的技术。1.全景图像生成的步骤与原理全景图像(Panorama
- 在个人PC上搭建jupyter服务并配置远程访问
为了成为一名优秀的炼丹师,最近配了台性能不错的主机,但苦于经常不在家,主机基本处于吃灰状态。因此,综合网上各种资料,在主机上安装jupyter并配置远程访问,能方便我随时随地远程使用。以下为配置教程,供大家参考。话不多说,开始我的表演。1.安装anaconda去anaconda官网下载,可以选择不同的版本。点击archive也可以下载历史版本,推荐下载历史版本,后面配置遇到的问题可能更少。下载完成
- 数据科学与大数据技术专业的核心课程体系及发展路径全解析
YangYang9YangYan
大数据
CDA数据分析师证书含金量高,适应了未来数字化经济和AI发展趋势,难度不高,行业认可度高,对于找工作很有帮助。一、课程体系三维地图二、核心课程能力矩阵课程模块关键技能行业应用场景工具链分布式计算Spark调优用户行为日志分析AWSEMR/Databricks数据挖掘特征工程金融反欺诈模型Scikit-learn实时数据处理Flink窗口计算物联网设备监控Kafka+Flink数据治理元数据管理企业
- SpringBoot与ApacheSpark、MyBatis实战整合
KENYCHEN奉孝
spring实站大全java开发语言mybatisspring
基于SpringBoot和ApacheSpark开发的实例以下是基于SpringBoot和ApacheSpark整合开发的实用示例分类及关键点,涵盖数据处理、机器学习、实时分析等场景。每个示例均提供核心思路和代码片段(Markdown格式)。数据处理与ETL示例1:CSV文件读取与处理SparkSessionspark=SparkSession.builder().appName("CSVProc
- Jupyter Notebook 黑科技:数据科学家必备 10 个技巧
在数据科学的浩瀚宇宙中,JupyterNotebook宛如一颗璀璨的明星,照亮着数据科学家们前行的道路。它以其强大的交互性、丰富的功能,成为了数据处理、分析与可视化的得力助手。今天,就让我们一同揭开JupyterNotebook的神秘面纱,探寻那些能让数据科学家如虎添翼的10个黑科技技巧。一、魔法命令,开启高效之旅魔法命令堪称JupyterNotebook的一大瑰宝。以%开头的单行魔法命令和以%%
- INVALID_COLUMN_NAME _AS_PATH
sparksql异常[INVALID_COLUMN_NAME_AS_PATH]ThedatasourceHiveFileFormatcannotsavethecolumnmin(birth_date)becauseitsnamecontainssomecharactersthatarenotallowedinfilepaths.Piease,useanallastorenameidemosqlSE
- Hive/Spark小文件解决方案(企业级实战)–参数和SQL优化
陆水A
大数据hivehadoopsparkpython
重点是后面的参数优化一、小文件的定义在Hadoop的上下文中,小文件的定义是相对于Hadoop分布式文件系统(HDFS)的块(Block)大小而言的。HDFS是Hadoop生态系统中的核心组件之一,它设计用于存储和处理大规模数据集。在HDFS中,数据被分割成多个块,每个块的大小是固定的,这个大小在Hadoop的不同版本和配置中可能有所不同,但常见的默认块大小包括128MB、256MB等。基于这个背
- Spark核心--RDD介绍
陆水A
大数据spark大数据分布式
一、RDD的介绍rdd弹性分布式数据集是spark框架自己封装的数据类型,用来管理内存数据数据集:rdd数据的格式类似Python中[]。hive中的该结构[]叫数组rdd提供算子(方法)方便开发人员进行调用计算数据在pysaprk中本质是定义一个rdd类型用来管理和计算内存数据分布式:rdd可以时使用多台机器的内存资源完成计算弹性:可以通过分区将数据分成多份234,每份数据对应一个task线程处
- C++与Hive、Spark、libhdfs、ACID交互技巧
KENYCHEN奉孝
C++开发语言springC++hivespark
C++与Hive交互的实例以下是C++与Hive交互的实例代码片段,涵盖连接、查询、数据操作等常见场景。假设使用libhdfs或thrift接口实现,部分示例需要结合Hive环境配置。基础连接与查询示例1:通过Thrift连接HiveServer2#include#include#includeusingnamespaceapache::thrift;usingnamespaceapache::h
- 全面的Spark学习资料合集:从基础到高级应用
本文还有配套的精品资源,点击获取简介:Spark是一个受到数据科学界青睐的大数据处理框架,以其高效、易用和可扩展性著称。本资料合集包括了Spark的基础学习材料、实战案例分析和高级应用实践,内容覆盖从Scala编程语言基础到Spark核心功能使用,再到大数据领域的实际应用。适合不同层次的学习者深入学习Spark,无论是初学者还是有经验的开发者,都能从中找到有价值的学习资源,帮助理解和掌握Spark
- 如何解决pip安装报错ModuleNotFoundError: No module named ‘notebook’问题
万粉变现经纪人
全栈Bug解决方案专栏pip全文检索pycharmpythonbeautifulsouppandasscipy
【Python系列Bug修复PyCharm控制台pipinstall报错】如何解决pip安装报错ModuleNotFoundError:Nomodulenamed‘notebook’问题一、摘要在使用PyCharm进行Python开发时,常常需要通过pipinstall安装第三方包。但有时即便已经安装成功,运行代码或在控制台中依然会报出如下错误:ModuleNotFoundError:Nomodu
- 一文带你理清Spark Core调优的方方面面
即将秃头的Java程序员
前言本文的注意事项观看本文前,可以先百度搜索一下Spark程序的十大开发原则看看哦文章虽然很长,可并不是什么枯燥乏味的内容,而且都是面试时的干货(我觉得)可以结合PC端的目录食用,可以直接跳转到你想要的那部分内容图非常的重要,是文章中最有价值的部分。如果不是很重要的图一般不会亲手画,特别是本文2.2.6的图非常重要此文会很大程度上借鉴美团的文章分享内容和Spark官方资料去进行说明,也会结合笔者自
- AI系统Spark原理与代码实战案例讲解
AI天才研究院
AI大模型企业级应用开发实战AgenticAI实战AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
AI系统Spark原理与代码实战案例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Spark、大数据处理、分布式计算、机器学习、数据挖掘、实时流处理1.背景介绍1.1问题的由来在大数据时代,海量数据的高效处理和分析已成为各行各业的迫切需求。传统的数据处理方式难以应对数据量激增、数据类型多样化以及实时性要求高等挑战。为了解决这些问题,Ap
- Spark大数据处理讲课笔记4.8 Spark SQL典型案例
酒城译痴无心剑
#Spark基础学习笔记(1)spark笔记sql
文章目录零、本讲学习目标一、使用SparkSQL实现词频统计(一)提出任务(二)实现任务1、准备数据文件2、创建Maven项目3、修改源程序目录4、添加依赖和设置源程序目录5、创建日志属性文件6、创建HDFS配置文件7、创建词频统计单例对象8、启动程序,查看结果9、词频统计数据转化流程图二、使用SparkSQL计算总分与平均分(一)提出任务(二)完成任务1、准备数据文件2、新建Maven项目3、修
- JVM StackMapTable 属性的作用及理解
lijingyao8206
jvm字节码Class文件StackMapTable
在Java 6版本之后JVM引入了栈图(Stack Map Table)概念。为了提高验证过程的效率,在字节码规范中添加了Stack Map Table属性,以下简称栈图,其方法的code属性中存储了局部变量和操作数的类型验证以及字节码的偏移量。也就是一个method需要且仅对应一个Stack Map Table。在Java 7版
- 回调函数调用方法
百合不是茶
java
最近在看大神写的代码时,.发现其中使用了很多的回调 ,以前只是在学习的时候经常用到 ,现在写个笔记 记录一下
代码很简单:
MainDemo :调用方法 得到方法的返回结果
- [时间机器]制造时间机器需要一些材料
comsci
制造
根据我的计算和推测,要完全实现制造一台时间机器,需要某些我们这个世界不存在的物质
和材料...
甚至可以这样说,这种材料和物质,我们在反应堆中也无法获得......
 
- 开口埋怨不如闭口做事
邓集海
邓集海 做人 做事 工作
“开口埋怨,不如闭口做事。”不是名人名言,而是一个普通父亲对儿子的训导。但是,因为这句训导,这位普通父亲却造就了一个名人儿子。这位普通父亲造就的名人儿子,叫张明正。 张明正出身贫寒,读书时成绩差,常挨老师批评。高中毕业,张明正连普通大学的分数线都没上。高考成绩出来后,平时开口怨这怨那的张明正,不从自身找原因,而是不停地埋怨自己家庭条件不好、埋怨父母没有给他创造良好的学习环境。
- jQuery插件开发全解析,类级别与对象级别开发
IT独行者
jquery开发插件 函数
jQuery插件的开发包括两种: 一种是类级别的插件开发,即给
jQuery添加新的全局函数,相当于给
jQuery类本身添加方法。
jQuery的全局函数就是属于
jQuery命名空间的函数,另一种是对象级别的插件开发,即给
jQuery对象添加方法。下面就两种函数的开发做详细的说明。
1
、类级别的插件开发 类级别的插件开发最直接的理解就是给jQuer
- Rome解析Rss
413277409
Rome解析Rss
import java.net.URL;
import java.util.List;
import org.junit.Test;
import com.sun.syndication.feed.synd.SyndCategory;
import com.sun.syndication.feed.synd.S
- RSA加密解密
无量
加密解密rsa
RSA加密解密代码
代码有待整理
package com.tongbanjie.commons.util;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerat
- linux 软件安装遇到的问题
aichenglong
linux遇到的问题ftp
1 ftp配置中遇到的问题
500 OOPS: cannot change directory
出现该问题的原因:是SELinux安装机制的问题.只要disable SELinux就可以了
修改方法:1 修改/etc/selinux/config 中SELINUX=disabled
2 source /etc
- 面试心得
alafqq
面试
最近面试了好几家公司。记录下;
支付宝,面试我的人胖胖的,看着人挺好的;博彦外包的职位,面试失败;
阿里金融,面试官人也挺和善,只不过我让他吐血了。。。
由于印象比较深,记录下;
1,自我介绍
2,说下八种基本类型;(算上string。楼主才答了3种,哈哈,string其实不是基本类型,是引用类型)
3,什么是包装类,包装类的优点;
4,平时看过什么书?NND,什么书都没看过。。照样
- java的多态性探讨
百合不是茶
java
java的多态性是指main方法在调用属性的时候类可以对这一属性做出反应的情况
//package 1;
class A{
public void test(){
System.out.println("A");
}
}
class D extends A{
public void test(){
S
- 网络编程基础篇之JavaScript-学习笔记
bijian1013
JavaScript
1.documentWrite
<html>
<head>
<script language="JavaScript">
document.write("这是电脑网络学校");
document.close();
</script>
</h
- 探索JUnit4扩展:深入Rule
bijian1013
JUnitRule单元测试
本文将进一步探究Rule的应用,展示如何使用Rule来替代@BeforeClass,@AfterClass,@Before和@After的功能。
在上一篇中提到,可以使用Rule替代现有的大部分Runner扩展,而且也不提倡对Runner中的withBefores(),withAfte
- [CSS]CSS浮动十五条规则
bit1129
css
这些浮动规则,主要是参考CSS权威指南关于浮动规则的总结,然后添加一些简单的例子以验证和理解这些规则。
1. 所有的页面元素都可以浮动 2. 一个元素浮动后,会成为块级元素,比如<span>,a, strong等都会变成块级元素 3.一个元素左浮动,会向最近的块级父元素的左上角移动,直到浮动元素的左外边界碰到块级父元素的左内边界;如果这个块级父元素已经有浮动元素停靠了
- 【Kafka六】Kafka Producer和Consumer多Broker、多Partition场景
bit1129
partition
0.Kafka服务器配置
3个broker
1个topic,6个partition,副本因子是2
2个consumer,每个consumer三个线程并发读取
1. Producer
package kafka.examples.multibrokers.producers;
import java.util.Properties;
import java.util.
- zabbix_agentd.conf配置文件详解
ronin47
zabbix 配置文件
Aliaskey的别名,例如 Alias=ttlsa.userid:vfs.file.regexp[/etc/passwd,^ttlsa:.:([0-9]+),,,,\1], 或者ttlsa的用户ID。你可以使用key:vfs.file.regexp[/etc/passwd,^ttlsa:.: ([0-9]+),,,,\1],也可以使用ttlsa.userid。备注: 别名不能重复,但是可以有多个
- java--19.用矩阵求Fibonacci数列的第N项
bylijinnan
fibonacci
参考了网上的思路,写了个Java版的:
public class Fibonacci {
final static int[] A={1,1,1,0};
public static void main(String[] args) {
int n=7;
for(int i=0;i<=n;i++){
int f=fibonac
- Netty源码学习-LengthFieldBasedFrameDecoder
bylijinnan
javanetty
先看看LengthFieldBasedFrameDecoder的官方API
http://docs.jboss.org/netty/3.1/api/org/jboss/netty/handler/codec/frame/LengthFieldBasedFrameDecoder.html
API举例说明了LengthFieldBasedFrameDecoder的解析机制,如下:
实
- AES加密解密
chicony
加密解密
AES加解密算法,使用Base64做转码以及辅助加密:
package com.wintv.common;
import javax.crypto.Cipher;
import javax.crypto.spec.IvParameterSpec;
import javax.crypto.spec.SecretKeySpec;
import sun.misc.BASE64Decod
- 文件编码格式转换
ctrain
编码格式
package com.test;
import java.io.File;
import java.io.FileInputStream;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.OutputStream;
- mysql 在linux客户端插入数据中文乱码
daizj
mysql中文乱码
1、查看系统客户端,数据库,连接层的编码
查看方法: http://daizj.iteye.com/blog/2174993
进入mysql,通过如下命令查看数据库编码方式: mysql> show variables like 'character_set_%'; +--------------------------+------
- 好代码是廉价的代码
dcj3sjt126com
程序员读书
长久以来我一直主张:好代码是廉价的代码。
当我跟做开发的同事说出这话时,他们的第一反应是一种惊愕,然后是将近一个星期的嘲笑,把它当作一个笑话来讲。 当他们走近看我的表情、知道我是认真的时,才收敛一点。
当最初的惊愕消退后,他们会用一些这样的话来反驳: “好代码不廉价,好代码是采用经过数十年计算机科学研究和积累得出的最佳实践设计模式和方法论建立起来的精心制作的程序代码。”
我只
- Android网络请求库——android-async-http
dcj3sjt126com
android
在iOS开发中有大名鼎鼎的ASIHttpRequest库,用来处理网络请求操作,今天要介绍的是一个在Android上同样强大的网络请求库android-async-http,目前非常火的应用Instagram和Pinterest的Android版就是用的这个网络请求库。这个网络请求库是基于Apache HttpClient库之上的一个异步网络请求处理库,网络处理均基于Android的非UI线程,通
- ORACLE 复习笔记之SQL语句的优化
eksliang
SQL优化Oracle sql语句优化SQL语句的优化
转载请出自出处:http://eksliang.iteye.com/blog/2097999
SQL语句的优化总结如下
sql语句的优化可以按照如下六个步骤进行:
合理使用索引
避免或者简化排序
消除对大表的扫描
避免复杂的通配符匹配
调整子查询的性能
EXISTS和IN运算符
下面我就按照上面这六个步骤分别进行总结:
- 浅析:Android 嵌套滑动机制(NestedScrolling)
gg163
android移动开发滑动机制嵌套
谷歌在发布安卓 Lollipop版本之后,为了更好的用户体验,Google为Android的滑动机制提供了NestedScrolling特性
NestedScrolling的特性可以体现在哪里呢?<!--[if !supportLineBreakNewLine]--><!--[endif]-->
比如你使用了Toolbar,下面一个ScrollView,向上滚
- 使用hovertree菜单作为后台导航
hvt
JavaScriptjquery.nethovertreeasp.net
hovertree是一个jquery菜单插件,官方网址:http://keleyi.com/jq/hovertree/ ,可以登录该网址体验效果。
0.1.3版本:http://keleyi.com/jq/hovertree/demo/demo.0.1.3.htm
hovertree插件包含文件:
http://keleyi.com/jq/hovertree/css
- SVG 教程 (二)矩形
天梯梦
svg
SVG <rect> SVG Shapes
SVG有一些预定义的形状元素,可被开发者使用和操作:
矩形 <rect>
圆形 <circle>
椭圆 <ellipse>
线 <line>
折线 <polyline>
多边形 <polygon>
路径 <path>
- 一个简单的队列
luyulong
java数据结构队列
public class MyQueue {
private long[] arr;
private int front;
private int end;
// 有效数据的大小
private int elements;
public MyQueue() {
arr = new long[10];
elements = 0;
front
- 基础数据结构和算法九:Binary Search Tree
sunwinner
Algorithm
A binary search tree (BST) is a binary tree where each node has a Comparable key (and an associated value) and satisfies the restriction that the key in any node is larger than the keys in all
- 项目出现的一些问题和体会
Steven-Walker
DAOWebservlet
第一篇博客不知道要写点什么,就先来点近阶段的感悟吧。
这几天学了servlet和数据库等知识,就参照老方的视频写了一个简单的增删改查的,完成了最简单的一些功能,使用了三层架构。
dao层完成的是对数据库具体的功能实现,service层调用了dao层的实现方法,具体对servlet提供支持。
&
- 高手问答:Java老A带你全面提升Java单兵作战能力!
ITeye管理员
java
本期特邀《Java特种兵》作者:谢宇,CSDN论坛ID: xieyuooo 针对JAVA问题给予大家解答,欢迎网友积极提问,与专家一起讨论!
作者简介:
淘宝网资深Java工程师,CSDN超人气博主,人称“胖哥”。
CSDN博客地址:
http://blog.csdn.net/xieyuooo
作者在进入大学前是一个不折不扣的计算机白痴,曾经被人笑话过不懂鼠标是什么,