9 1 0 5 4 ,Ultra-QuickSort produces the output
0 1 4 5 9 .Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
5 9 1 0 5 4 3 1 2 3 0
6 0
Stefan B�ttcher
归并法求逆序数。关键思想,在归并过程中,如果用n^2的做法求左右两部分间的逆序数是不会减少复杂度的。但如果左右两部分已经是有序的,就可以用 two pointers 的方法,用O(n)合并。那对左右两边先排序会影响最终答案吗?很明显不会。。。归并排序恰好可以在归并求解的过程同时完成,所以用归并排序更快。我试了直接用sort排序,也能通过,慢一些,但写起来简单。
#include<cstdio> #include<map> #include<queue> #include<cstring> #include<iostream> #include<cstring> #include<algorithm> #include<vector> using namespace std; const int maxn = 500000 + 5; const int INF = 1000000000; typedef long long LL; typedef pair<LL, int> P; int a[maxn]; int tem[maxn]; LL solve(int l, int r){ if(l>=r) return 0; LL ret = 0; int mid = (l+r)/2; ret += solve(l, mid); ret += solve(mid+1, r); int pl = l, pr = mid+1; for(int pl = l;pl <= mid;pl++){ for(int j = pr;j <= r;j++){ if(a[pl]<a[j]){ break; } else pr++; } ret += pr-mid-1; } /* pl = l, pr = mid+1; int cnt = l; while(pl <= mid || pr <= r){ if(pl > mid){ tem[cnt++] = a[pr++]; } else if(pr > r){ tem[cnt++] = a[pl++]; } else if(a[pl]<a[pr]){ tem[cnt++] = a[pl++]; } else{ tem[cnt++] = a[pr++]; } } for(int i = l;i <= r;i++){ a[i] = tem[i]; } */ sort(a+l,a+r+1); return ret; } int main(){ int n; while(scanf("%d", &n)){ if(n == 0) break; for(int i = 0;i < n;i++) scanf("%d", &a[i]); printf("%lld\n", solve(0, n-1)); } return 0; }