UVA 701 The Archeologists' Dilemma

题意:看了别人的解释:给一个数字串x,求最小的正整数e,使得pow(2,e)==x*pow(10,y),并且y大于串e的长度。

可以将式子转换一下:x*10^y<=2^e<(x+1)*10^y =>log2(x)+ylog2(10)<= e <log2(x+1)+ylog2(10),那么就可以枚举y了,当不等式左右两边在取正后不相等,较大的就是答案了

#include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
using namespace std;

long long n;
char str[20];

void solve(){
    sprintf(str,"%lld",n);
    for (int i = strlen(str)+1; ; i++){
        long long x = (long long)(log2(n)+i*log2(10));
        long long y = (long long)(log2(n+1)+i*log2(10));
        if (x != y){
            printf("%lld\n",y);
            break;
        }
    }
}

int main(){
    while (scanf("%lld",&n) != EOF){
        solve();
    }
    return 0;
}


你可能感兴趣的:(UVA 701 The Archeologists' Dilemma)