3、合并成本序列的DFT
#include<cstdio> #include<cstring> #include<cstdlib> #include<cmath> #include<algorithm> #include<iostream> #define pi acos(-1) #define maxn 200100 using namespace std; struct abcd { double r,i; abcd operator+(abcd x) {abcd ans=x;ans.r+=r;ans.i+=i;return ans;} abcd operator-(abcd x) {abcd ans;ans.r=r-x.r;ans.i=i-x.i;return ans;} abcd operator*(abcd x) {abcd ans;ans.r=r*x.r-i*x.i;ans.i=r*x.i+i*x.r;return ans;} }a[maxn],b[maxn],p[maxn],temp[maxn]; int n,m,dight; char s[maxn]; int st[maxn]; void FFT(abcd x[],int n,int type) { if (n==1) return; for (int i=0;i<n;i+=2) temp[i>>1]=x[i],temp[i+n>>1]=x[i+1]; memcpy(x,temp,sizeof(abcd)*n); abcd *l=x,*r=x+(n>>1); FFT(l,n>>1,type);FFT(r,n>>1,type); abcd root,w; root.r=cos(2*pi*type/n);root.i=sin(2*pi*type/n); w.r=1;w.i=0; for (int i=0;i<n>>1;i++,w=w*root) temp[i]=l[i]+w*r[i],temp[(n>>1)+i]=l[i]-w*r[i]; memcpy(x,temp,sizeof(abcd)*n); } int main() { scanf("%d",&n); scanf("%s",s+1); for (int i=0;i<n;i++) a[i].r=s[n-i]-'0'; scanf("%s",s+1); for (int i=0;i<n;i++) b[i].r=s[n-i]-'0'; for (dight=1;dight<n<<1;dight<<=1); FFT(a,dight,1);FFT(b,dight,1); for (int i=0;i<dight;i++) p[i]=a[i]*b[i]; FFT(p,dight,-1); int top=0; for (int i=0;i<=n-1<<1;i++) { st[++top]+=(int)(p[i].r/dight+0.5); st[top+1]+=st[top]/10; st[top]%=10; } if (st[top+1]) top++; for (int i=top;i>=1;i--) printf("%d",st[i]);printf("\n"); return 0; }