- 超大规模生成式中文预训练语言模型:CPM的构建与应用
王良一呀
语言模型人工智能神经网络
【量子阅读】大规模预训练模型:提出了一个超大规模的生成式中文预训练语言模型(CPM),参数量达到26亿,这是目前最大的中文预训练语言模型。新词元构建:提出了一个新的子词词典,适应中文语料库,并增加了批量大小以提高模型训练的稳定性。大规模训练策略:通过增加批量大小和分布式训练策略,使得大型模型的训练成为可能,减少了节点间的数据传输。【摘要】本文介绍了清华大学与BAAI联合发布的中文预训练语言模型(C
- [特殊字符]️用Python打造全能型新闻爬虫:抓取全文+图片+视频的完整攻略(含最新Playwright方案)
Python爬虫项目
python爬虫数据分析开发语言音视频javascript数据挖掘
一、前言:为什么要抓取新闻网站全文?在大数据、人工智能风口之上,构建新闻语料库用于训练自然语言处理(NLP)模型、情感分析、热点追踪等任务变得愈发重要。然而,大多数新闻网站并不提供开放的API,内容分散在网页的各个结构中,因此我们必须编写一个功能齐全的爬虫来抓取文章、图片、视频等多种内容。️二、技术选型与环境准备主要依赖库库名用途Playwright最新浏览器自动化技术,支持动态页面渲染Beaut
- LSA主题模型:基于奇异值分解的主题模型
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战计算计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
LSA主题模型:基于奇异值分解的主题模型1.背景介绍主题模型是一种无监督的机器学习技术,用于发现大规模文本语料库中隐藏的语义结构。它能够自动识别文档集合中的主题,并根据这些主题对文档进行聚类和分类。主题模型在文本挖掘、信息检索、推荐系统等领域有着广泛的应用。LSA(LatentSemanticAnalysis)是一种经典的主题模型算法,基于奇异值分解(SVD)对词-文档矩阵进行分解,从而揭示词语和
- 说话人识别python_基于各种分类算法的说话人识别(年龄段识别)
weixin_39673184
说话人识别python
基于各种分类算法的语音分类(年龄段识别)概述实习期间作为帮手打杂进行了一段时间的语音识别研究,内容是基于各种分类算法的语音的年龄段识别,总结一下大致框架,基本思想是:获取语料库TIMIT提取数据特征,进行处理MFCC/i-vectorLDA/PLDA/PCA语料提取,基于分类算法进行分类SVM/SVR/GMM/GBDT...用到的工具有HTK(C,shell)/Kaldi(C++,shell)/L
- ChatGPT、DeepSeek等大语言模型技术教程
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 智能办公与科研革命:ChatGPT+DeepSeek大模型在论文撰写、数据分析与AI建模中的实践指南
jwwkyjspt
机器学习SCI论文人工智能chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等深度科研
Yolo566Q
chatgpt语言模型数据分析
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- 大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等
xiao5kou4chang6kai4
人工智能深度学习机器学习rnn语言模型lstm深度学习机器学习人工智能DeepSeek
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模
asyxchenchong888
chatgpt语言模型机器学习
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- ChatGPT、DeepSeek等大语言模型助力高效办公、论文与项目撰写、数据分析、机器学习与深度学习建模等科研应用
科研的力量
人工智能ChatGPTchatgpt语言模型数据分析
随着人工智能技术的快速发展,大语言模型如ChatGPT和DeepSeek在科研领域的应用正在为科研人员提供强大的支持。这些模型通过深度学习和大规模语料库训练,能够帮助科研人员高效地筛选文献、生成论文内容、进行数据分析和优化机器学习模型。ChatGPT和DeepSeek能够快速理解和生成复杂的语言,帮助研究人员在撰写论文时提高效率,不仅生成高质量的文章内容,还能优化论文结构和语言表达。在数据分析方面
- Orange3实战教程:文本挖掘---情感分析
err2008
Orange3实战教程数据挖掘深度学习机器学习人工智能自然语言处理神经网络orange3中文版
情感分析预测文本的情感倾向。输入语料库(Corpus):一组文档的集合。输出语料库(Corpus):包含每个文档情感信息的语料库。情感分析为语料库中的每个文档预测情感倾向。该方法使用了来自NLTK的Liu&Hu和Vader情感分析模块,DataScienceLab的多语言情感词典,ArthurJacobs的SentiArt,以及WalterDaelemans等人的LiLaH情感词典。所有方法均基于
- 《A DECODER-ONLY FOUNDATION MODEL FOR TIME-SERIES FORECASTING》阅读总结
胡萝拔贝贝
人工智能python机器学习
介绍了一个名为TimeFM的新型时间序列预测基础模型,该模型受启发于自然语言处理领域的大语言模型,通过再大规模真实世界和合成时间序列数据集上的预训练,能够在多种不同的公共数据集上实现接近最先进监督模型的零样本预测性能。该模型使用真实世界和合成数据集构建的大型时间序列语料库进行预训练,并展示了在不同领域、预测范围和时间粒度的未见数据集上的准确零样本预测能力。1、引言时间序列在零售、金融、制造业、医疗
- CHASE、CoSQL、SPARC概念介绍
爱吃土豆的马铃薯ㅤㅤㅤㅤㅤㅤㅤㅤㅤ
语言模型
CHASE:一个跨领域多轮交互text2sql中文数据集,包含5459个多轮问题组成的列表,一共17,940个二元组,涉及280个不同领域的数据库。CoSQL:一个用于构建跨域对话文本到sql系统的语料库。它是Spider和SParC任务的对话版本,由30k+回合和10k+带注释的SQL查询组成,这些查询来自Wizard-of-Oz的3k个对话集合,查询了跨越138个领域的200个复杂数据库。SP
- 【Elasticsearch】TF-IDF 和 BM25相似性算法
risc123456
Elasticsearchelasticsearch
在Elasticsearch中,TF-IDF和BM25是两种常用的文本相似性评分算法,但它们的实现和应用场景有所不同。以下是对这两种算法的对比以及在Elasticsearch中的使用情况:TF-IDF-定义与原理:TF-IDF是一种经典的信息检索算法,用于评估一个词语对于一个文件集或语料库中某份文件的重要程度。它由两部分组成:-TF(TermFrequency):词频,即词语在文档中出现的次数。-
- 使用Weaviate和LangChain实现RAG (检索增强生成)
在现代的AI应用中,RAG(检索增强生成)技术通过将生成模型与外部知识库结合,提供了一个强大的信息检索和处理方法。本次分享将会介绍如何使用Weaviate作为知识库,并结合LangChain实现一个RAG应用。技术背景介绍RAG技术通过结合生成式AI和检索系统,能够在大规模语料库中找到相关信息来增强生成模型的回答精确度。Weaviate是一个灵活且可扩展的向量数据库,非常适合用于RAG系统中的知识
- NLP学习路线图(四十五):偏见与公平性
摸鱼许可证
NLP学习路线图自然语言处理学习人工智能nlp
一、偏见:算法中的“隐形歧视者”NLP模型本身并无立场,其偏见主要源于训练数据及算法设计:数据根源:人类偏见的镜像历史与社会刻板印象:大量文本数据记录着人类社会固有的偏见。词嵌入模型(如Word2Vec,GloVe)曾显示:“男人”与“程序员”的关联度远高于“女人”;“非裔美国人姓名”更易与负面词汇关联。训练语料库若包含带有性别歧视、种族歧视或地域歧视的文本,模型便可能吸收并重现这些关联。代表性偏
- RAPTOR:树结构的索引和检索系统的递归抽象处理
lichunericli
人工智能自然语言处理
论文地址:https://arxiv.org/pdf/2401.18059.pdf摘要增强型检索语言模型能够更好地适应世界状态的变化,并整合长尾知识,然而现有大多数方法仅能从检索语料库中检索到较短的连续文本片段,这限制了对整个文档上下文的整体理解。我们引入一种新颖的方法,即递归地嵌入、聚类及总结文本块,自下而上构建一个包含不同层次抽象的树状结构。在推理阶段,我们的RAPTOR模型会从这个树中检索信
- 大模型笔记_模型微调
饕餮争锋
AI大模型笔记笔记语言模型人工智能
1.大模型微调的概念大模型微调(Fine-tuning)是指在预训练大语言模型(如GPT、BERT、LLaMA等)的基础上,针对特定任务或领域,使用小量的目标领域数据对模型进行进一步训练,使其更好地适配具体应用场景的过程。预训练模型通常在大规模通用语料库(如互联网文本、书籍等)上训练,具备通用的语言理解和生成能力,而微调则通过调整模型参数,使其在特定任务(如分类、问答、生成等)或领域(如医疗、金融
- 【RAG召回】BM25算法示例
weixin_37763484
大模型人工智能搜索引擎
rank-bm25功能示例本篇将通过多个示例,快速展示rank-bm25库的核心功能。不使用jieba。准备工作首先,确保您已经安装了rank-bm25。pipinstallrank-bm25接下来,我们定义一个通用的中文语料库和分词函数。这里我们使用简单的单字切分作为分词方法,以避免引入第三方库。#1.定义一个中文语料库corpus=["北京是中国的首都,也是一座历史悠久的文化名城。","上海是
- 《Python自然语言处理(第二版)-Steven Bird等》学习笔记:第02章 获得文本语料和词汇资源
miniAI学堂
2015年度Python自然语言处理语料库中文资源
第02章获得文本语料和词汇资源2.1获取文本语料库古腾堡语料库网络和聊天文本布朗语料库路透社语料库就职演说语料库标注文本语料库在其他语言的语料库文本语料库的结构载入你自己的语料库中文自然语言处理语料/数据集情感/观点/评论倾向性分析中文命名实体识别推荐系统2.2条件频率分布条件和事件按文体计数词汇绘制分布图和分布表使用双连词生成随机文本2.3更多关于Python代码重用使用文本编辑器创建程序函数模
- NLP(自然语言处理)技术的主要实现思路
简简单单OnlineZuozuo
m1Python领域m2Java领域自然语言处理人工智能
文章目录NLP(自然语言处理)技术的主要实现思路语句拆分建模分析NLP(自然语言处理)技术的主要实现思路NLP(自然语言处理)技术的主要实现思路是,首先利用自然语言语料库和机器学习技术,将文本信息进行分词和词性标注,从而得到计算机可以理解的结构化表示。然后,利用语义分析技术,将文本信息转换为机器可以理解的概念和语义表示,从而使机器能够正确理解文本信息的含义。最后,利用语言生成技术,将机器理解的概念
- 5.28 孔老师 nlp讲座
柠石榴
自然语言处理人工智能
本次讲座主要介绍了语言模型的起源、预训练模型以及大语言模型(需要闫老师后讲)等内容。首先,语言模型的起源可以追溯到语音识别中的统计语言模型,通过估计声学参数串产生文字串的概率来找到最大概率的文字串。然后,介绍了语言模型的基本概念,即给定一个文字串S,用P(w1,w2,…,WN)表示其概率。最后,提到了预训练模型在大语言模型中的应用,以及如何在语料库中解决条件概率稀疏的问题。1语言模型与条件概率估计
- 【ASR】基础端到端语音识别工具包:FunASR
木亦汐丫
论文翻译FunASRParaformerFSMN-VADCT-Transformer语音识别工具端到端模型非自回归NAR
论文地址:https://arxiv.org/abs/2305.11013摘要本文介绍FunASR,一个开源语音识别工具包,旨在弥合学术研究和工业应用之间的差距。FunASR提供在大规模工业语料库上训练的模型以及将它们部署到应用程序中的能力。该工具包的旗舰模型Paraformer是一种非自回归端到端语音识别模型,已在包含60,000小时语音的手动注释普通话语音识别数据集上进行训练。为了提高Para
- 为什么共现矩阵是高维稀疏的
幽·
NLP与机器学习矩阵人工智能线性代数
为什么共现矩阵是高维稀疏的?共现矩阵(Co-occurrenceMatrix)的高维稀疏性是其固有特性,主要由以下原因导致:1.高维性的根本原因词汇表大小决定维度:共现矩阵的维度为(V\timesV),其中(V)是词汇表的大小(即语料库中所有唯一单词的数量)。例如:一个包含10,000个唯一单词的语料库,共现矩阵的维度是(10,000\times10,000),即1亿个元素。词汇表通常很大:自然语
- gensim使用
swai1688
Python开发自然语言处理人工智能nlp
参考教程核心概念Document(文档)Corpus(语料库)Vector(向量)Model(模型)Dictionary,doc2bow#处理流程:语料转成2维,->Dictionary变成字典->doc2bow变成向量->models进入模型#corpora:语料相关的知识#models:模型相关的fromgensimimportcorporafromgensimimportmodels#输入的
- Python库: gensim
司南锤
python基础学习PYTHON库python开发语言
Gensim是一个用于主题建模、文档索引和大型语料库相似性检索的Python库。主要用于处理自然语言处理(NLP)和信息检索(IR)任务。Gensim的设计目标是处理原始的、非结构化的文本数据,并且能够高效地处理大规模数据集。以下是Gensim库的一些主要功能和组件:1.主题建模Gensim提供了多种主题建模算法,其中最著名的是LatentDirichletAllocation(LDA)。LDA是
- Python自然语言处理:gensim库的探索与应用
丶本心灬
本文还有配套的精品资源,点击获取简介:本文档介绍了gensim库——一个专为Python设计的开源自然语言处理工具,它支持词向量模型、主题模型、相似度计算、TF-IDF和LSA等核心功能。该库适用于文档相似性和主题建模任务,特别强调其在处理大规模语料库中的高效性和准确性。包含gensim-4.0.0版本的预编译安装包,为64位Windows系统上的Python3.6版本提供便捷安装体验。文档还提供
- python 英语分词_自然语言处理 | NLTK英文分词尝试
weixin_39640687
python英语分词
NLTK是一个高效的Python构建的平台,用来处理自然语言数据,它提供了易于使用的接口,通过这些接口可以访问超过50个语料库和词汇资源(如WordNet),还有一套用于分类、标记化、词干标记、解析和语义推理的文本处理库。NLTK可以在Windows、MacOS以及Linux系统上使用。1.安装NLTK使用pipinstallnltk命令安装NLTK库,NLTK中集成了语料与模型等的包管理器,通过
- 初始LLM
凢en
AI笔记ai
LLM是什么?从字面意思来讲,LLM是LargeLanguageModel这三个单词的首字母缩写,意为大语言模型。大型语言模型(LLM)是一种基于深度学习技术的自然语言处理(NLP)工具,能理解和生成文本。通过大量语料库训练,LLM在翻译、写作、对话等任务中展现出卓越的能力。常见的应用包括自动问答、生成文本、文本摘要等。由于其多模态特性,LLM还可用于图像和音频处理,为多领域带来创新可能。LLM与
- AI时代大数据已经不火了吗?
AI方案2025
人工智能大数据
在AI技术迅猛发展的当下,大数据并未“过时”,而是以更深层次的方式与AI技术融合,成为驱动智能化时代的核心要素。结合多方面的行业动态和趋势分析,可以得出以下结论:一、大数据与AI的共生关系:从基础到协同数据是AI发展的“燃料”AI模型的训练与优化高度依赖高质量数据。例如,中国DeepSeek-R1模型通过整合微信生态中积累的4.2亿篇私域语料库,显著提升了信息处理效率,其数据密度是传统爬虫数据的2
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$