1 线程池代码:
package org.biao.threadpool; import java.util.List; import java.util.Vector; //线程池,其实就是一些队列操作 public class ThreadPool { private static ThreadPool instance_ = null; // 定义优先级别常数,空闲的线程按照优先级不同分别存放在三个vector中 public static final int LOW_PRIORITY = 0; public static final int NORMAL_PRIORITY = 1; public static final int HIGH_PRIORITY = 2; // 保存空闲线程的List,或者说它是"池" private List<PooledThread>[] idleThreads_; private boolean shutDown_ = false; private int threadCreationCounter_; // 以创建的线程的个数 private boolean debug_ = false; // 是否输出调试信息 // 构造函数,因为这个类视作为singleton实现的,因此构造函数为私有 private ThreadPool() { // 产生空闲线程.三个vector分别存放分别处在三个优先级的线程的引用 List[] idleThreads = { new Vector(5), new Vector(5), new Vector(5) }; idleThreads_ = idleThreads; threadCreationCounter_ = 0; } public int getCreatedThreadsCount() { return threadCreationCounter_; } // 通过这个函数得到线程池类的实例 public static ThreadPool instance() { if (instance_ == null) instance_ = new ThreadPool(); return instance_; } public boolean isDebug() { return debug_; } // 将线程repoolingThread从新放回到池中,这个方式是同步方法。 // 这个方法会在多线程的环境中调用,设计这个方法的目的是让工作者线程 // 在执行完target中的任务后,调用池类的repool()方法, // 将线程自身从新放回到池中。只所以这么做是因为线程池并不能预见到 // 工作者线程何时会完成任务。参考PooledThread的相关代码。 protected synchronized void repool(PooledThread repoolingThread) { if (!shutDown_) { if (debug_) { System.out.println("ThreadPool.repool() : repooling "); } switch (repoolingThread.getPriority()) { case Thread.MIN_PRIORITY: { idleThreads_[LOW_PRIORITY].add(repoolingThread); break; } case Thread.NORM_PRIORITY: { idleThreads_[NORMAL_PRIORITY].add(repoolingThread); break; } case Thread.MAX_PRIORITY: { idleThreads_[HIGH_PRIORITY].add(repoolingThread); break; } default: throw new IllegalStateException( "Illegal priority found while repooling a Thread!"); } notifyAll();// 通知所有的线程 } else { if (debug_) { System.out .println("ThreadPool.repool() : Destroying incoming thread."); } repoolingThread.shutDown();// 关闭线程 } if (debug_) { System.out.println("ThreadPool.recycle() : done."); } } public void setDebug(boolean newDebug) { debug_ = newDebug; } // 停止池中所有线程 public synchronized void shutdown() { shutDown_ = true; if (debug_) { System.out.println("ThreadPool : shutting down "); } for (int prioIndex = 0; prioIndex <= HIGH_PRIORITY; prioIndex++) { List prioThreads = idleThreads_[prioIndex]; for (int threadIndex = 0; threadIndex < prioThreads.size(); threadIndex++) { PooledThread idleThread = (PooledThread) prioThreads .get(threadIndex); idleThread.shutDown(); } } notifyAll(); if (debug_) { System.out.println("ThreadPool : shutdown done."); } } // 以Runnable为target,从池中选择一个优先级为priority的线程创建线程 // 并让线程运行。 public synchronized void start(Runnable target, int priority) { PooledThread thread = null; // 被选出来执行target的线程 List idleList = idleThreads_[priority]; if (idleList.size() > 0) { // 如果池中相应优先级的线程有空闲的,那么从中取出一个 // 设置它的target,并唤醒它 // 从空闲的线程队列中获取 int lastIndex = idleList.size() - 1; thread = (PooledThread) idleList.get(lastIndex); idleList.remove(lastIndex); thread.setTarget(target); } // 池中没有相应优先级的线程 else { threadCreationCounter_++; // 创建新线程, thread = new PooledThread(target, "PooledThread #" + threadCreationCounter_, this); // 新线程放入池中 switch (priority) { case LOW_PRIORITY: { thread.setPriority(Thread.MIN_PRIORITY); break; } case NORMAL_PRIORITY: { thread.setPriority(Thread.NORM_PRIORITY); break; } case HIGH_PRIORITY: { thread.setPriority(Thread.MAX_PRIORITY); break; } default: { thread.setPriority(Thread.NORM_PRIORITY); break; } } // 启动这个线程 thread.start(); } } }
2 线程池中等待处理工作任务的线程:
package org.biao.threadpool; //池里的线程 public class PooledThread extends Thread { private ThreadPool pool_; // 池中线程需要知道自己所在的池 private Runnable target_; // 线程的任务 private boolean shutDown_ = false; private boolean idle_ = false;// 设置是否让线程处于等待状态 private PooledThread() { super(); } private PooledThread(Runnable target) { super(target); // 初始化父类 } private PooledThread(Runnable target, String name) { super(target, name); } public PooledThread(Runnable target, String name, ThreadPool pool) { super(name); pool_ = pool; target_ = target; } private PooledThread(String name) { super(name);// 初始化父类 } private PooledThread(ThreadGroup group, Runnable target) { super(group, target); } private PooledThread(ThreadGroup group, Runnable target, String name) { super(group, target, name); } private PooledThread(ThreadGroup group, String name) { super(group, name); } public java.lang.Runnable getTarget() { return target_; } public boolean isIdle() { return idle_;// 返回当前的状态 } // 工作者线程与通常线程不同之处在于run()方法的不同。通常的线程, // 完成线程应该执行的代码后,自然退出,线程结束。 // 虚拟机在线程结束后收回分配给线程的资源,线程对象被垃圾回收。] // 而这在池化的工作者线程中是应该避免的,否则线程池就失去了意义。 // 作为可以被放入池中并重新利用的工作者线程,它的run()方法不应该结束, // 随意,在随后可以看到的实现中,run()方法执行完target对象的代码后, // 就将自身repool(),然后调用wait()方法,使自己睡眠而不是退出循环和run()。 // 这就使线程池实现的要点。 public void run() { // 这个循环不能结束,除非池类要求线程结束 // 每一次循环都会执行一次池类分配给的任务target while (!shutDown_){ idle_ = false; if (target_ != null){ target_.run(); // 运行target中的代码 }//干完活了,将这个线程放入线程池中 idle_ = true; try { // 线程通知池重新将自己放回到池中 pool_.repool(this); // // 进入池中后睡眠,等待被唤醒执行新的任务, // 这里是线程池中线程于普通线程的run()不同的地方。 synchronized (this) { wait(); } } catch (InterruptedException ie) { } idle_ = false; } // 循环这里不能结束,否则线程结束,资源被VM收回, // 就无法起到线程池的作用了 } public synchronized void setTarget(java.lang.Runnable newTarget) {// 设置新的target,并唤醒睡眠中的线程 target_ = newTarget; // 新任务 notifyAll(); // 唤醒睡眠的线程 } public synchronized void shutDown() { shutDown_ = true; notifyAll(); } }
3 测试代码:
package org.biao.threadpool; public class Test { public static void main(String[] args) { System.out.println("Testing ThreadPool "); System.out.println("Creating ThreadPool "); ThreadPool pool = ThreadPool.instance(); pool.setDebug(true); class Worker implements Runnable {//这个才是真正干活的人啊 public int count = 0; public void run() { System.out.println("Testrunner sleeping 5 seconds "); // 此方法使本线程睡眠5秒 synchronized (this) { try { wait(5000);// 等待5秒时间 } catch (InterruptedException ioe) { } } System.out.println("Testrunner leaving "); count++; } } System.out.println("Starting a new thread "); Worker runner = new Worker(); pool.start(runner, pool.HIGH_PRIORITY); System.out.println("count : " + runner.count); System.out.println("Thread count : " + pool.getCreatedThreadsCount()); pool.shutdown(); } }
测试结果:
Testing ThreadPool
Creating ThreadPool
Starting a new thread
count : 0
Thread count : 1
Testrunner sleeping 5 seconds
ThreadPool : shutting down
ThreadPool : shutdown done.
Testrunner leaving
ThreadPool.repool() : Destroying incoming thread.
ThreadPool.recycle() : done.