UVa 10976 Fractions Again?

题目链接:

http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=37234

题目描述:

输入正整数k,找到所有正整数 x>=y,使得1/k = 1/x + 1/y.


思路:

因为 x>=y 所以有: 1/k <= 1/y + 1/y –> 1/k <= 2/y –> y <= 2k. 又因为 1/k = 1/y + 1/x –> k*y / (y-k) = x, 即当 k*y % (y-k) == 0时,必然得整数x,此对xy为一解。

/************************************************************************* > File Name: UVa_10976.cpp > Author: dulun > Mail: [email protected] > Created Time: 2016年03月19日 星期六 00时45分43秒 ************************************************************************/

#include<iostream>
#include<stdio.h>
#include<cstring>
#include<cstdlib>
#include<algorithm>
#define LL long long
using namespace std;

const int N = 1086;

int x[N];
int Y[N];

int main()
{
    int k;
    while(~scanf("%d", &k))
    {
        int sum = 0;
        int k2 = k<<1;
        for(int y = k+1; y <= k2; y++)
        {
            if(k * y % (y - k) == 0)
            {
                x[sum] = k*y / (y-k);
                Y[sum] = y;
                sum++;
            }
        }
        printf("%d\n", sum);
        for(int i = 0; i < sum; i++) printf("1/%d = 1/%d + 1/%d\n", k, x[i], Y[i]);
    }

    return 0;
}

你可能感兴趣的:(uva)