- AI模型训练中过拟合和欠拟合的区别是什么?
workflower
人工智能算法人工智能数据分析
在AI模型训练中,过拟合和欠拟合是两种常见的模型性能问题,核心区别在于模型对数据的学习程度和泛化能力:欠拟合(Underfitting)-定义:模型未能充分学习到数据中的规律,对训练数据的拟合程度较差,在训练集和测试集上的表现都不好(如准确率低、损失值高)。-原因:-模型结构过于简单(如用线性模型解决非线性问题);-训练数据量不足或特征信息不充分;-训练时间太短,模型尚未学到有效模式。-表现:训练
- GPT-4 在 AIGC 中的微调技巧:让模型更懂你的需求
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络AIGCai
GPT-4在AIGC中的微调技巧:让模型更懂你的需求关键词:GPT-4、AIGC、模型微调、监督学习、指令优化、过拟合预防、个性化生成摘要:AIGC(人工智能生成内容)正在重塑内容创作行业,但通用的GPT-4模型可能无法精准匹配你的垂直需求——比如写电商爆款文案时总“跑题”,或生成技术文档时专业术语不够。本文将用“教小朋友学画画”的通俗类比,从微调的底层逻辑讲到实战技巧,带你掌握让GPT-4“更懂
- Redis大Key问题
懒虫虫~
业务解决方案redis缓存
一、背景在sit环境中,测试批量上传500个网元进行批量激活,突然发现激活任务执行失败,而且系统其他功能接口响应缓慢,系统几乎卡死,服务器OOM。二、问题分析分析代码发现,此功能激活子任务把Redis的任务信息全部查询出来,然后放入Redis中,这500个子任务大概任务信息数据量达到37W+。直接导致Redis内存占用率过高,服务器OOM。三、解决方案针对修复激活子任务场景,先删除记录,再发送MQ
- 华为OD机试真题——出租车计费/靠谱的车 (2025A卷:100分)Java/python/JavaScript/C/C++/GO最佳实现
2025A卷100分题型本专栏内全部题目均提供Java、python、JavaScript、C、C++、GO六种语言的最佳实现方式;并且每种语言均涵盖详细的问题分析、解题思路、代码实现、代码详解、3个测试用例以及综合分析;本文收录于专栏:《2025华为OD真题目录+全流程解析+备考攻略+经验分享》华为OD机试真题《出租车计费/靠谱的车》:文章快捷目录题目描述及说明JavapythonJavaScr
- Python 实现基于SDAE堆叠去噪自编码器的数据分类预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
Pythonpython分类开发语言人工智能大数据深度学习机器学习
目录Python实现基于SDAE堆叠去噪自编码器的数据分类预测的详细项目实例...1项目背景介绍...2项目目标与意义...2目标...2意义...3项目挑战及解决方案...3噪声数据处理...3特征提取与降维...3模型过拟合问题...4训练时间与计算资源...4数据不平衡问题...4项目特点与创新...4去噪自编码器的堆叠应用...4多层次特征学习...4噪声抑制机制...4模型自动优化...
- 基于强化学习的工业SCR脱硝系统控制算法设计与实现
pk_xz123456
算法python人工智能python深度学习数据挖掘
基于强化学习的工业SCR脱硝系统控制算法设计与实现1.引言选择性催化还原(SCR)脱硝系统是火电厂等工业设施中用于降低氮氧化物(NOx)排放的关键环保设备。传统的PID控制方法在面对SCR系统非线性、大滞后等特性时往往表现不佳。本文将详细介绍如何利用强化学习技术设计智能控制器,实现SCR脱硝系统的优化控制。2.系统概述与问题分析2.1SCR脱硝系统工作原理SCR系统通过在催化剂作用下,向烟气中喷入
- 机器学习-XGBoost和SHAP解析数据
python机器学习ML
机器学习人工智能数据分析python
一、引言在机器学习领域,XGBoost表现出色,具有高效性、准确性、灵活性和良好的防过拟合能力。高效性使其能快速处理大规模复杂数据,降低训练时间成本。通过组合弱学习器提高准确性和泛化能力。其支持多种任务和自定义指标,参数调优选项丰富。内置正则化机制防止过拟合。同时,SHAP对模型解释起关键作用,能计算特征的SHAP值来明确特征对预测结果的贡献,帮助理解模型决策。二、数据准备和模型训练1.导入所需库
- 【LeetCode算法题】和为K的子数组
恩比贤AmbitioN
算法数据结构leetcode
根据题目描述,这是一道关于子数组的算法问题。题目要求从一个整数数组nums中找出所有长度为k的连续子数组,并统计这些子数组中元素和为偶数的子数组数量。题目提供了两个测试用例:用例1:nums=[1,1,1],k=2,输出:2用例2:nums=[1,2,3],k=3,输出:2思路问题分析:我们需要从数组nums中提取所有长度为k的连续子数组。对于每个子数组,计算其元素之和,判断和是否为偶数。统计满足
- 一月总结
Lithilda
29号回家,毫无意外进入了大吃大喝模式,除了嘴不停,其他基本哪里都不动……1月的最后一天,终于做了次运动。回顾一下第一份月度手收账:运动12次,完结了4本书。希望在家的假期中能坚持学习和运动,不要胖太多……回顾下四本书:《第五项修炼》,讲学习型组织的管理经典,学到很多新概念,特别是系统性问题分析和反馈循环,可惜看了理论也并不能锻炼出一双慧眼,只能哀叹自己还没有书中描述的洞察力和解决问题的能力。《非
- 微信小程序长期订阅 用户关闭后 引导用户自动跳到小程序设置去打开
以下是针对微信小程序订阅消息权限引导的优化方案,结合你的代码场景进行了全面升级,确保在用户关闭或拒绝权限时能有效引导:一、核心问题分析微信小程序的订阅消息机制要求必须通过用户主动交互触发,当用户拒绝订阅(尤其是勾选“不再询问”)后,直接调用订阅接口会失败(错误码20004)。此时需要通过合理引导,让用户自愿前往设置页开启权限。二、优化后的完整代码实现//每次点击当前页面底部tabs时触发onTab
- 从0开始学习R语言--Day55--弹性网络
Chef_Chen
r语言
通常来说,样本数据的数据个数会远大于特征数,但是当我们遇到特殊数据,比如基因数据,可能会有成百上千甚至上万地特征量,而样本个数只有几十个,此时如果直接做回归,由于特征数量很多,且有很多特征共线性较高,很容易过拟合,而能处理共线性的方法,又无法将特征的系数压缩为0,这样计算量会大大增加。用弹性网络建模,其与其他不同的是,有两个惩罚项,L1负责控制特征系数(可以为0),做初步的筛选;L2负责剔除相关性
- PyTorch中实现早停机制(EarlyStopping)附代码
自信的小螺丝钉
AI知识pytorchpython人工智能AI深度学习
1.核心目的当模型在验证集上的性能不再提升时,提前终止训练防止过拟合,节省计算资源2.实现方法监控验证集指标(如损失、准确率),设置耐心值(Patience)3.代码:classEarlyStopping:def__init__(self,patience=10,delta=0):"""EarlystoppingArgs:patience:int,numberofepochstowaitbefor
- 数据结构作业2
A题:统计回文字符串题目描述现在给你一个字符串S,请你计算S中有多少连续子串是回文串。输入输入包含多组测试数据。每组输入是一个非空字符串,长度不超过5000。输出对于每组输入,输出回文子串的个数。样例输入abaaa样例输出43问题分析先读取字符串s,采取从中心向两边进行扩展的方法,若回文字符串为奇数个字符则起始时中心均为i;若回文字符串为偶数个字符则起始时中心i和i+1,直至字符不匹配或者数组越界
- 12.5日课
台一DDM路静娟
绩效评估,就会有排名,排名就会有一二三等,把人划分为不一样的级别,那么管理者需要针对绩效的评估,拿数据来讲,拿数据结果来分析,如何让他提高绩效,针对员工所犯的绩效问题分析,来帮助他。但重要的是不能因为绩效评估,来评判他的性格,给他下定义,这样不能起到好的效果,反而弄巧成拙。绩效考核是为了让员工更好的提升自己,更好的完成团队任务,也是为了管理的控制,所以绩效评估谈话对事不对人,让员工感觉到你是真的帮
- windows dockerdesktop拉取镜像报错
lishijie135
windows
1.问题描述:运行docker-composeup-d启动容器报错:Errorresponsefromdaemon:Get"https://registry-1.docker.io/v2/":net/http:requestcanceledwhilewaitingforconnection(Client.Timeoutexceededwhileawaitingheaders)如下图:问题分析:执行
- 神经网络过拟合处理:原理与实践
慕婉0307
神经网络神经网络深度学习机器学习
一、过拟合概述1.1什么是过拟合过拟合(Overfitting)是指机器学习模型在训练数据上表现非常好,但在未见过的测试数据上表现较差的现象。这通常意味着模型过于复杂,已经"记住"了训练数据的细节和噪声,而不是学习到数据的普遍规律。1.2过拟合的表现特征训练集上的准确率很高,但验证集/测试集上的准确率明显较低训练误差持续下降,但验证误差在某个点后开始上升模型对训练数据中的小波动/噪声过于敏感1.3
- 图书推荐-话少不墨迹《大模型技术30讲》
_abab
图书推荐语言模型
关于本书:大模型技术30讲减少过拟合的数据方法过拟合是模型过度拟合训练数据噪声的现象,导致测试性能下降增加高质量标注数据是减少过拟合最有效的方法数据增强通过生成现有数据的变体扩展数据集,提高模型泛化能力自监督预训练可有效利用未标注数据进行模型初始化模型相关正则化方法L2正则化和权重衰减通过添加权重惩罚项约束模型复杂度Dropout通过随机禁用神经元防止对特定特征的依赖早停法通过监控验证集性能终止训
- 神经网络——归一化层
DAWN_T17
机器学习神经网络人工智能深度学习pytorchjupyter机器学习
归一化层(NormalizationLayer)是深度学习中一种关键的技术,用于对神经网络某一层的输入进行标准化处理,从而改善模型的训练稳定性和收敛速度。核心思想神经网络在训练过程中,各层输入的分布可能随前层参数变化而剧烈波动(即内部协变量偏移),导致训练困难。归一化层通过将输入标准化,使数据分布更加稳定,从而:加速收敛:减少梯度消失/爆炸问题,允许使用更大学习率。提高泛化能力:缓解过拟合,降低对
- AI产品经理面试宝典:100道经典问题与详尽答案,一文掌握!
AI大模型-大飞
人工智能产品经理面试大模型学习llama学习langchain
以前总说AI是未来,但现在AI就是当下。今天为大家整理了一份AI产品经理的面试题,总共100道。面试题一般是对求职者相对比较综合的考察,即使你目前无此求职意向,或者不是AI产品经理,亦可通过面试题来测试自己对AI的认知程度。具体AI产品经理100面试题如下:1.什么是机器学习?2.描述深度学习与传统机器学习的区别。3.什么是自然语言处理?4.如何评估一个机器学习模型的性能?5.什么是过拟合和欠拟合
- 深入解析LoRA:低秩适应的高效大模型微调技术
Zhong Yang
大模型微调人工智能机器学习算法
1.背景与动机随着大语言模型(如GPT-3、Llama)的参数规模突破千亿级,传统全参数微调面临三大挑战:显存爆炸:微调70B模型需数千GB显存(如Llama-270B全微调需1.2TB显存)计算成本:全参数微调的计算量随模型规模呈二次增长过拟合风险:大规模模型对少量下游数据易产生过拟合LoRA(Low-RankAdaptation)由微软研究院提出,通过低秩矩阵分解技术,将微调参数量压缩至原模型
- 机器学习—交叉验证
hwang_zhic
1、经验误差与过拟合通常我们把分类错误的样本数占样本总数的比例称为"错误率”,学习器在训练集上的误差称为“经验误差”或“训练误差”,在新样本上的误差称为“泛化误差”。我们需要的是泛化误差低的学习器,但是我们只能习得一个经验误差很小、在训练集上表现很好的学习器。然而,如果学习器把训练样本的自身的一些特点当做了所有潜在样本都具有的一般性质,会导致泛化性能下降,这称为“过拟合”,相对的“欠拟合”是指对样
- 如何防止重复提交订单?
天天摸鱼的java工程师
java
如何防止重复提交订单?作者:Java后端开发工程师一、背景介绍:为什么会产生重复提交?在电商平台中,用户提交订单是一个非常敏感的动作。这通常涉及:库存扣减优惠券核销支付下单消息发送但用户总喜欢:点两次“提交订单”按钮网络卡顿时刷新页面使用浏览器回退再次提交结果就是:重复提交订单,造成资源浪费,甚至业务损失!二、问题分析:重复提交的常见场景场景示例用户行为多次点击按钮、浏览器刷新接口幂等性差接口无幂
- okhttp xxx Android10Platform, sslSocketFactory is class com.android.org.conscrypt.OpenSSLSocketFact
mmsx
Android常用开发技术okhttpandroid
问题分析这个错误通常表示在Android10平台上,OkHttp在处理SSL/TLS连接时,无法正确提取信任管理器(TrustManager)。sslSocketFactory显示为com.android.org.conscrypt.OpenSSLSocketFactoryImpl,这是Android系统默认的SSL套接字工厂。问题可能出在信任管理器的配置或者与Android10的兼容性上。可能原
- 过拟合、欠拟合及其解决方案;梯度消失、梯度爆炸;循环神经网络进阶
Ryan_sz1
1、过拟合、欠拟合及其解决方案过拟合、欠拟合机器学习或者训练深度神经网络的时候经常会出现欠拟合和过拟合这两个问题,但是,一开始我们的模型往往是欠拟合的,也正是因为如此才有了优化的空间,我们需要不断的调整算法来使得模型的表达能拿更强。但是优化到了一定程度就需要解决过拟合的问题了。也就是说欠拟合是模型表达能力不够,达不到很好的表达效果。而过拟合是在训练集的范围内表达能力过强,导致完全拟合了训练集。解决
- Unity VR手术模拟器复原1:解决配置问题
马特说
unityvr游戏引擎
UnityVR手术模拟器复原1:解决配置问题项目背景在恢复基于UnityMirror的VR手术模拟器过程中,我们遇到了一系列配置问题。本文详细记录了从发现问题到最终解决的完整过程。核心配置问题分析问题1:端口不匹配导致连接失败症状表现:#客户端日志显示:Log:[LinkPlayer]ContentIpAndPort()-TargetPort:7111#客户端尝试连接7111#但服务器实际运行在:
- Unity VR多人手术模拟恢复2:客户端移动同步问题分析与解决方案
马特说
unityvr游戏引擎
UnityVR多人手术模拟恢复2:客户端移动同步问题分析与解决方案问题背景在开发基于UnityMirror网络架构的VR多人手术模拟系统时,我们遇到了一个复杂的客户端移动同步问题:主要操作者(第一个客户端):VR设备,拥有完整权限,可以控制手术工具观察者客户端(第二个及以上客户端):桌面模式,观看模式,应该能使用WASD进行移动问题现象:观察者客户端无法使用WASD移动,但鼠标视角控制正常系统架构
- 彻底解决"‘vue-cli-service‘ 不是内部或外部命令"的问题!
晷龙烬
龙鳞拆解(前端深渊)vue.js前端npm
以龙息淬炼代码,在时光灰烬中重铸技术星河欢迎来到晷龙烬的博客✨!这里记录技术学习点滴,分享实用技巧,偶尔聊聊奇思妙想~原创内容✍️,转载请注明出处~感谢支持❤️!请尊重原创!欢迎在评论区交流!引言我最近拉取了一个Vue2的老项目,各种尝试,最终卡在了“vue-cli-service不是内部或外部命令”的这个错误提示上,令人倍感挫败。本文聚焦这一常见难题,提供我解决的思路,以供参考。一、问题分析该错
- 【CNN】卷积神经网络池化- part2
1.池化降采样,减少参数数量,避免过拟合,提高鲁棒性2.池化操作池化操作(也称为下采样,Subsampling)类似卷积操作,使用的也是一个很小的矩阵,叫做池化核,但是池化核本身没有参数,只是通过对输入特征矩阵本身进行运算,它的大小通常是2x2、3x3、4x4等,其中2x2使用频率最高。然后将池化核在卷积得到的输出特征图中进行池化操作,需要注意的是,池化的过程中也有Padding方式以及步长的概念
- Python 单例模式几种实现方式
@MMiL
PyBuildpythonmatplotlibnumpypandas
文章目录1基础实现方式1.1模块导入法(推荐)1.2重写`__new__`方法2进阶实现方式2.1元类(Metaclass)控制2.2线程安全单例2.3单例装饰器3关键问题分析4实践建议各位老板好,单例模式确保一个类只有一个实例,并提供全局访问点。适用于日志记录、配置管理、数据库连接池等场景。以下是Python单例模式的5种实现方式:1基础实现方式1.1模块导入法(推荐)Python模块天然支持单
- 第十二届“中关村青联杯”全国研究生数学建模竞赛-A题:水面舰艇编队防空和信息化战争评估模型(续)(附MATLAB代码实现)
格图素书
大数据竞赛赛题解析数学建模
目录5.3.3问题三的总结5.4问题四的模型建立与求解5.4.1问题分析5.4.2计算方位角和航向角5.4.3计算距离D和水平速度5.4.4分析并建立模型5.4.4.1聚类分析方法的提出5.4.4.2模型的建立5.4.5问题四的总结5.5问题五的模型建立与求解5.5.1问题五的分析5.5.2传统的战争评估模型5.5.2.1正规作战模型5.5.2.2游击作战模型5.5.2.3混合作战模型5.5.3信
- C/C++Win32编程基础详解视频下载
择善Zach
编程C++Win32
课题视频:C/C++Win32编程基础详解
视频知识:win32窗口的创建
windows事件机制
主讲:择善Uncle老师
学习交流群:386620625
验证码:625
--
- Guava Cache使用笔记
bylijinnan
javaguavacache
1.Guava Cache的get/getIfPresent方法当参数为null时会抛空指针异常
我刚开始使用时还以为Guava Cache跟HashMap一样,get(null)返回null。
实际上Guava整体设计思想就是拒绝null的,很多地方都会执行com.google.common.base.Preconditions.checkNotNull的检查。
2.Guava
- 解决ora-01652无法通过128(在temp表空间中)
0624chenhong
oracle
解决ora-01652无法通过128(在temp表空间中)扩展temp段的过程
一个sql语句后,大约花了10分钟,好不容易有一个结果,但是报了一个ora-01652错误,查阅了oracle的错误代码说明:意思是指temp表空间无法自动扩展temp段。这种问题一般有两种原因:一是临时表空间空间太小,二是不能自动扩展。
分析过程:
既然是temp表空间有问题,那当
- Struct在jsp标签
不懂事的小屁孩
struct
非UI标签介绍:
控制类标签:
1:程序流程控制标签 if elseif else
<s:if test="isUsed">
<span class="label label-success">True</span>
</
- 按对象属性排序
换个号韩国红果果
JavaScript对象排序
利用JavaScript进行对象排序,根据用户的年龄排序展示
<script>
var bob={
name;bob,
age:30
}
var peter={
name;peter,
age:30
}
var amy={
name;amy,
age:24
}
var mike={
name;mike,
age:29
}
var john={
- 大数据分析让个性化的客户体验不再遥远
蓝儿唯美
数据分析
顾客通过多种渠道制造大量数据,企业则热衷于利用这些信息来实现更为个性化的体验。
分析公司Gartner表示,高级分析会成为客户服务的关键,但是大数据分析的采用目前仅局限于不到一成的企业。 挑战在于企业还在努力适应结构化数据,疲于根据自身的客户关系管理(CRM)系统部署有效的分析框架,以及集成不同的内外部信息源。
然而,面对顾客通过数字技术参与而产生的快速变化的信息,企业需要及时作出反应。要想实
- java笔记4
a-john
java
操作符
1,使用java操作符
操作符接受一个或多个参数,并生成一个新值。参数的形式与普通的方法调用不用,但是效果是相同的。加号和一元的正号(+)、减号和一元的负号(-)、乘号(*)、除号(/)以及赋值号(=)的用法与其他编程语言类似。
操作符作用于操作数,生成一个新值。另外,有些操作符可能会改变操作数自身的
- 从裸机编程到嵌入式Linux编程思想的转变------分而治之:驱动和应用程序
aijuans
嵌入式学习
笔者学习嵌入式Linux也有一段时间了,很奇怪的是很多书讲驱动编程方面的知识,也有很多书将ARM9方面的知识,但是从以前51形式的(对寄存器直接操作,初始化芯片的功能模块)编程方法,和思维模式,变换为基于Linux操作系统编程,讲这个思想转变的书几乎没有,让初学者走了很多弯路,撞了很多难墙。
笔者因此写上自己的学习心得,希望能给和我一样转变
- 在springmvc中解决FastJson循环引用的问题
asialee
循环引用fastjson
我们先来看一个例子:
package com.elong.bms;
import java.io.OutputStream;
import java.util.HashMap;
import java.util.Map;
import co
- ArrayAdapter和SimpleAdapter技术总结
百合不是茶
androidSimpleAdapterArrayAdapter高级组件基础
ArrayAdapter比较简单,但它只能用于显示文字。而SimpleAdapter则有很强的扩展性,可以自定义出各种效果
ArrayAdapter;的数据可以是数组或者是队列
// 获得下拉框对象
AutoCompleteTextView textview = (AutoCompleteTextView) this
- 九封信
bijian1013
人生励志
有时候,莫名的心情不好,不想和任何人说话,只想一个人静静的发呆。有时候,想一个人躲起来脆弱,不愿别人看到自己的伤口。有时候,走过熟悉的街角,看到熟悉的背影,突然想起一个人的脸。有时候,发现自己一夜之间就长大了。 2014,写给人
- Linux下安装MySQL Web 管理工具phpMyAdmin
sunjing
PHPInstallphpMyAdmin
PHP http://php.net/
phpMyAdmin http://www.phpmyadmin.net
Error compiling PHP on CentOS x64
一、安装Apache
请参阅http://billben.iteye.com/admin/blogs/1985244
二、安装依赖包
sudo yum install gd
- 分布式系统理论
bit1129
分布式
FLP
One famous theory in distributed computing, known as FLP after the authors Fischer, Lynch, and Patterson, proved that in a distributed system with asynchronous communication and process crashes,
- ssh2整合(spring+struts2+hibernate)-附源码
白糖_
eclipsespringHibernatemysql项目管理
最近抽空又整理了一套ssh2框架,主要使用的技术如下:
spring做容器,管理了三层(dao,service,actioin)的对象
struts2实现与页面交互(MVC),自己做了一个异常拦截器,能拦截Action层抛出的异常
hibernate与数据库交互
BoneCp数据库连接池,据说比其它数据库连接池快20倍,仅仅是据说
MySql数据库
项目用eclipse
- treetable bug记录
braveCS
table
// 插入子节点删除再插入时不能正常显示。修改:
//不知改后有没有错,先做个备忘
Tree.prototype.removeNode = function(node) {
// Recursively remove all descendants of +node+
this.unloadBranch(node);
// Remove
- 编程之美-电话号码对应英语单词
bylijinnan
java算法编程之美
import java.util.Arrays;
public class NumberToWord {
/**
* 编程之美 电话号码对应英语单词
* 题目:
* 手机上的拨号盘,每个数字都对应一些字母,比如2对应ABC,3对应DEF.........,8对应TUV,9对应WXYZ,
* 要求对一段数字,输出其代表的所有可能的字母组合
- jquery ajax读书笔记
chengxuyuancsdn
jQuery ajax
1、jsp页面
<%@ page language="java" import="java.util.*" pageEncoding="GBK"%>
<%
String path = request.getContextPath();
String basePath = request.getScheme()
- JWFD工作流拓扑结构解析伪码描述算法
comsci
数据结构算法工作活动J#
对工作流拓扑结构解析感兴趣的朋友可以下载附件,或者下载JWFD的全部代码进行分析
/* 流程图拓扑结构解析伪码描述算法
public java.util.ArrayList DFS(String graphid, String stepid, int j)
- oracle I/O 从属进程
daizj
oracle
I/O 从属进程
I/O从属进程用于为不支持异步I/O的系统或设备模拟异步I/O.例如,磁带设备(相当慢)就不支持异步I/O.通过使用I/O 从属进程,可以让磁带机模仿通常只为磁盘驱动器提供的功能。就好像支持真正的异步I/O 一样,写设备的进程(调用者)会收集大量数据,并交由写入器写出。数据成功地写出时,写入器(此时写入器是I/O 从属进程,而不是操作系统)会通知原来的调用者,调用者则会
- 高级排序:希尔排序
dieslrae
希尔排序
public void shellSort(int[] array){
int limit = 1;
int temp;
int index;
while(limit <= array.length/3){
limit = limit * 3 + 1;
- 初二下学期难记忆单词
dcj3sjt126com
englishword
kitchen 厨房
cupboard 厨柜
salt 盐
sugar 糖
oil 油
fork 叉;餐叉
spoon 匙;调羹
chopsticks 筷子
cabbage 卷心菜;洋白菜
soup 汤
Italian 意大利的
Indian 印度的
workplace 工作场所
even 甚至;更
Italy 意大利
laugh 笑
m
- Go语言使用MySQL数据库进行增删改查
dcj3sjt126com
mysql
目前Internet上流行的网站构架方式是LAMP,其中的M即MySQL, 作为数据库,MySQL以免费、开源、使用方便为优势成为了很多Web开发的后端数据库存储引擎。MySQL驱动Go中支持MySQL的驱动目前比较多,有如下几种,有些是支持database/sql标准,而有些是采用了自己的实现接口,常用的有如下几种:
http://code.google.c...o-mysql-dri
- git命令
shuizhaosi888
git
---------------设置全局用户名:
git config --global user.name "HanShuliang" //设置用户名
git config --global user.email "
[email protected]" //设置邮箱
---------------查看环境配置
git config --li
- qemu-kvm 网络 nat模式 (四)
haoningabc
kvmqemu
qemu-ifup-NAT
#!/bin/bash
BRIDGE=virbr0
NETWORK=192.168.122.0
GATEWAY=192.168.122.1
NETMASK=255.255.255.0
DHCPRANGE=192.168.122.2,192.168.122.254
TFTPROOT=
BOOTP=
function check_bridge()
- 不要让未来的你,讨厌现在的自己
jingjing0907
生活 奋斗 工作 梦想
故事one
23岁,他大学毕业,放弃了父母安排的稳定工作,独闯京城,在家小公司混个小职位,工作还算顺手,月薪三千,混了混,混走了一年的光阴。 24岁,有了女朋友,从二环12人的集体宿舍搬到香山民居,一间平房,二人世界,爱爱爱。偶然约三朋四友,打扑克搓麻将,日子快乐似神仙; 25岁,出了几次差,调了两次岗,薪水涨了不过百,生猛狂飙的物价让现实血淋淋,无力为心爱银儿购件大牌
- 枚举类型详解
一路欢笑一路走
enum枚举详解enumsetenumMap
枚举类型详解
一.Enum详解
1.1枚举类型的介绍
JDK1.5加入了一个全新的类型的”类”—枚举类型,为此JDK1.5引入了一个新的关键字enum,我们可以这样定义一个枚举类型。
Demo:一个最简单的枚举类
public enum ColorType {
RED
- 第11章 动画效果(上)
onestopweb
动画
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Eclipse中jsp、js文件编辑时,卡死现象解决汇总
ljf_home
eclipsejsp卡死js卡死
使用Eclipse编辑jsp、js文件时,经常出现卡死现象,在网上百度了N次,经过N次优化调整后,卡死现象逐步好转,具体那个方法起到作用,不太好讲。将所有用过的方法罗列如下:
1、取消验证
windows–>perferences–>validation
把 除了manual 下面的全部点掉,build下只留 classpath dependency Valida
- MySQL编程中的6个重要的实用技巧
tomcat_oracle
mysql
每一行命令都是用分号(;)作为结束
对于MySQL,第一件你必须牢记的是它的每一行命令都是用分号(;)作为结束的,但当一行MySQL被插入在PHP代码中时,最好把后面的分号省略掉,例如:
mysql_query("INSERT INTO tablename(first_name,last_name)VALUES('$first_name',$last_name')");
- zoj 3820 Building Fire Stations(二分+bfs)
阿尔萨斯
Build
题目链接:zoj 3820 Building Fire Stations
题目大意:给定一棵树,选取两个建立加油站,问说所有点距离加油站距离的最大值的最小值是多少,并且任意输出一种建立加油站的方式。
解题思路:二分距离判断,判断函数的复杂度是o(n),这样的复杂度应该是o(nlogn),即使常数系数偏大,但是居然跑了4.5s,也是醉了。 判断函数里面做了3次bfs,但是每次bfs节点最多