Find the contiguous subarray within an array (containing at least one number) which has the largest sum.
For example, given the array [−2,1,−3,4,−1,2,1,−5,4]
,
the contiguous subarray [4,−1,2,1]
has the largest sum = 6
.
click to show more practice.
If you have figured out the O(n) solution, try coding another solution using the divide and conquer approach, which is more subtle.
思路分析:
当前下标i的值nums[i] 和 包含当前下标nums[i]的值的前项和,比较两者大小
ret值表示当前最大值
/* Find the contiguous subarray within an array (containing at least one number) which has the largest sum. For example, given the array [−2,1,−3,4,−1,2,1,−5,4], the contiguous subarray [4,−1,2,1] has the largest sum = 6. */ #include "stdafx.h" #include <iostream> #include <vector> #include <algorithm> using namespace std; class Solution_053_MaximumSubarray { public: int maxSubArray(vector<int>& nums) { //−2,1,−3,4,−1,2,1,−5,4 int n = nums.size(); int ret = INT_MIN; int sum = 0; for (int i = 0; i < n; i++) { sum = max(sum + nums[i], nums[i]); ret = max(sum, ret); } return ret; } };