LeetCode刷题笔录Permutation Sequence

The set [1,2,3,…,n] contains a total of n! unique permutations.

By listing and labeling all of the permutations in order,
We get the following sequence (ie, for n = 3):

  1. "123"
  2. "132"
  3. "213"
  4. "231"
  5. "312"
  6. "321"

Given n and k, return the kth permutation sequence.

Note: Given n will be between 1 and 9 inclusive.

开始的想法是DFS,按顺序得到所有的permutation,直到得到第K个为止。

public class Solution {
	public String getPermutation(int n, int k) {
		boolean[] used = new boolean[n];
		List<String> res = new ArrayList<String>();
		helper(0, new int[] { 1 }, k, n, used, new StringBuffer(), res);
		return res.get(0);
	}

	public void helper(int level, int[] count, int k, int n, boolean[] used,
			StringBuffer str, List<String> res) {
		if (level == n) {
			if (count[0] < k) {
				count[0]++;
				return;
			} else {
				res.add(str.toString());
				return;
			}
		}
		if (count[0] <= k) {
			for (int i = 1; i <= n; i++) {
				if (used[i - 1] == true)
					continue;
				used[i - 1] = true;
				str.append(i);
				helper(level + 1, count, k, n, used, str, res);
				used[i - 1] = false;
				str.deleteCharAt(str.length() - 1);
			}
		}
	}
}

在自己机器上没什么问题,不过在LeetCode的OJ里总会超时。这样的时间复杂度确实有点太高了。


你可能感兴趣的:(LeetCode,Math,DFS)