前几天自己想出了利用归并排序求逆序数的方法,找了一个求逆序数的题2299 交了300++MS水过...
Ultra-QuickSort
Time Limit: 7000MS |
|
Memory Limit: 65536K |
Total Submissions: 19686 |
|
Accepted: 6959 |
Description
In this problem, you have to analyze a particular sorting algorithm. The algorithm processes a sequence of n distinct integers by swapping two adjacent sequence elements until the sequence is sorted in ascending order. For the input sequence
9 1 0 5 4 ,
Ultra-QuickSort produces the output
0 1 4 5 9 .
Your task is to determine how many swap operations Ultra-QuickSort needs to perform in order to sort a given input sequence.
Input
The input contains several test cases. Every test case begins with a line that contains a single integer n < 500,000 -- the length of the input sequence. Each of the the following n lines contains a single integer 0 ≤ a[i] ≤ 999,999,999, the i-th input sequence element. Input is terminated by a sequence of length n = 0. This sequence must not be processed.
Output
For every input sequence, your program prints a single line containing an integer number op, the minimum number of swap operations necessary to sort the given input sequence.
Sample Input
5
9
1
0
5
4
3
1
2
3
0
Sample Output
6
0
#include<iostream>
using namespace std;
__int64 sum=0;
int *guibing(int *data,int n)
{
int i,j,k,L,R,s; int *now;
for(i=2;i<n*2;i=i<<1)
{
now=new int[n];
for(j=0;j<=n/i;j++)
{
k=L=i*j; R=L+i/2; s=0;
while(L<n&&R<n&&L<i*j+i/2&&R<i*(j+1))
{
if(data[L]<=data[R])
{
now[k++]=data[L++];
sum+=s;
}
else
{
now[k++]=data[R++];
s++;
}
}
while(L<n&&L<i*j+i/2)
{
now[k++]=data[L++];
sum+=s;
}
while(R<n&&R<(j+1)*i)
now[k++]=data[R++];
}
delete data;
data=now;
}
return data;
}
int main()
{
int n,i;
int *data;
while(cin>>n&&n)
{
sum=0;
data=new int[n];
for(i=0;i<n;i++)
scanf("%d",data+i);
data=guibing(data,n);
delete data;
printf("%I64d/n",sum);
}
}