Given a set of non-overlapping intervals, insert a new interval into the intervals (merge if necessary).
You may assume that the intervals were initially sorted according to their start times.
Example 1:
Given intervals [1,3],[6,9]
, insert and merge [2,5]
in as [1,5],[6,9]
.
Example 2:
Given [1,2],[3,5],[6,7],[8,10],[12,16]
, insert and merge [4,9]
in as [1,2],[3,10],[12,16]
.
This is because the new interval [4,9]
overlaps with [3,5],[6,7],[8,10]
.
解析:对于这个问题无非就三种情况:1、被给出的间隔的终端比要插入的起始端小,则直接将其插入。2、被给出的间隔的起始端比要插入的终端大,将两者都插入。3、介入上述两种情况之间 即存在交叉。则考虑起始和终端时应取最小的起始端和最大的终止端即可。
代码:
/** * Definition for an interval. * struct Interval { * int start; * int end; * Interval() : start(0), end(0) {} * Interval(int s, int e) : start(s), end(e) {} * }; */ class Solution { public: vector<Interval> insert(vector<Interval> &intervals, Interval newInterval) { // Start typing your C/C++ solution below // DO NOT write int main() function vector<Interval> result; vector<Interval>::iterator it; bool flag=true; for (it=intervals.begin();it!=intervals.end();it++) { if (it->end<newInterval.start) { result.push_back(*it); continue; } if (it->start>newInterval.end) { if (flag) { result.push_back(newInterval); flag=false; } result.push_back(*it); continue; } newInterval.start=it->start<newInterval.start?it->start:newInterval.start; newInterval.end=it->end>newInterval.end?it->end:newInterval.end; } if (flag) { result.push_back(newInterval); } return result; } };