public interface Sampler<K,V>{ K[] getSample(InputFormat<K,V> inf,JobConf job) throws IOException; }
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException { InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks()); ArrayList<K> samples = new ArrayList<K>(numSamples); int splitsToSample = Math.min(maxSplitsSampled, splits.length); Random r = new Random(); long seed = r.nextLong(); r.setSeed(seed); LOG.debug("seed: " + seed); // shuffle splits for (int i = 0; i < splits.length; ++i) { InputSplit tmp = splits[i]; int j = r.nextInt(splits.length); splits[i] = splits[j]; splits[j] = tmp; } // our target rate is in terms of the maximum number of sample splits, // but we accept the possibility of sampling additional splits to hit // the target sample keyset for (int i = 0; i < splitsToSample || (i < splits.length && samples.size() < numSamples); ++i) { RecordReader<K,V> reader = inf.getRecordReader(splits[i], job, Reporter.NULL); K key = reader.createKey(); V value = reader.createValue(); while (reader.next(key, value)) { if (r.nextDouble() <= freq) { if (samples.size() < numSamples) { samples.add(key); } else { // When exceeding the maximum number of samples, replace a // random element with this one, then adjust the frequency // to reflect the possibility of existing elements being // pushed out int ind = r.nextInt(numSamples); if (ind != numSamples) { samples.set(ind, key); } freq *= (numSamples - 1) / (double) numSamples; } key = reader.createKey(); } } reader.close(); } return (K[])samples.toArray(); }
首先通过InputFormat的getSplits方法得到所有的输入分区;然后确定需要抽样扫描的分区数目,取输入分区总数与用户输入的maxSplitsSampled两者的较小的值得到splitsToSample;然后对输入分区数组shuffle排序,打乱其原始顺序;然后循环逐个扫描每个分区中的记录进行采样,循环的条件是当前已经扫描的分区数小于splitsToSample或者当前已经扫描的分区数超过了splitsToSample但是小于输入分区总数并且当前的采样数小于最大采样数numSamples。
每个分区中记录采样的具体过程如下:
从指定分区中取出一条记录,判断得到的随机浮点数是否小于等于采样频率freq,如果大于则放弃这条记录,然后判断当前的采样数是否小于最大采样数,如果小于则这条记录被选中,被放进采样集合中,否则从【0,numSamples】中选择一个随机数,如果这个随机数不等于最大采样数numSamples,则用这条记录替换掉采样集合随机数对应位置的记录,同时采样频率freq减小变为freq*(numSamples-1)/numSamples。然后依次遍历分区中的其它记录。
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException { InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks()); ArrayList<K> samples = new ArrayList<K>(numSamples); int splitsToSample = Math.min(maxSplitsSampled, splits.length); int splitStep = splits.length / splitsToSample; int samplesPerSplit = numSamples / splitsToSample; long records = 0; for (int i = 0; i < splitsToSample; ++i) { RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep], job, Reporter.NULL); K key = reader.createKey(); V value = reader.createValue(); while (reader.next(key, value)) { samples.add(key); key = reader.createKey(); ++records; if ((i+1) * samplesPerSplit <= records) { break; } } reader.close(); } return (K[])samples.toArray(); }
首先根据InputFormat得到输入分区数组;然后确定需要采样的分区数splitsToSample为最大分区数和输入分区总数之间的较小值;然后确定对分区采样时的间隔splitStep为输入分区总数除splitsToSample的商;然后确定每个分区的采样数samplesPerSplit为最大采样数除splitsToSample的商。被采样的分区下标为i*splitStep,已经采样的分区数目达到splitsToSample即停止采样。
对于每一个分区,读取一条记录,将这条记录添加到样本集合中,如果当前样本数大于当前的采样分区所需要的样本数,则停止对这个分区的采样。如此循环遍历完这个分区的所有记录。
public K[] getSample(InputFormat<K,V> inf, JobConf job) throws IOException { InputSplit[] splits = inf.getSplits(job, job.getNumMapTasks()); ArrayList<K> samples = new ArrayList<K>(); int splitsToSample = Math.min(maxSplitsSampled, splits.length); int splitStep = splits.length / splitsToSample; long records = 0; long kept = 0; for (int i = 0; i < splitsToSample; ++i) { RecordReader<K,V> reader = inf.getRecordReader(splits[i * splitStep], job, Reporter.NULL); K key = reader.createKey(); V value = reader.createValue(); while (reader.next(key, value)) { ++records; if ((double) kept / records < freq) { ++kept; samples.add(key); key = reader.createKey(); } } reader.close(); } return (K[])samples.toArray(); }
首先根据InputFormat得到输入分区数组;然后确定需要采样的分区数splitsToSample为最大分区数和输入分区总数之间的较小值;然后确定对分区采样时的间隔splitStep为输入分区总数除splitsToSample的商。被采样的分区下标为i*splitStep,已经采样的分区数目达到splitsToSample即停止采样。
对于每一个分区,读取一条记录,如果当前样本数与已经读取的记录数的比值小于freq,则将这条记录添加到样本集合,否则读取下一条记录。这样依次循环遍历完这个分区的所有记录。