- PCL | 体素滤波器pcl::VoxelGrid<>
Nines~
ROS算法ROSSLAMPCLC++
文章目录概述一、定义介绍二、功能作用三、使用示例源码:解释:概述 本节详细介绍pcl::VoxelGrid是PointCloudLibrary(PCL)中的一个常用滤波器,用于对点云数据进行体素栅格化(VoxelGridFiltering)。它将点云分割成一个个体素(voxel),并使用这些体素中的点计算出一个代表性的点,从而减少点云的数量,实现降采样的效果。二、功能作用降采样:在处理大规模点云
- 协同过滤算法:挖掘用户偏好,精准推荐商品
AI大模型应用实战
javapythonjavascriptkotlingolang架构人工智能
1.背景介绍协同过滤(CollaborativeFiltering,CF)作为推荐系统中的重要技术,其核心思想是利用用户和物品间的行为数据,挖掘用户隐性偏好,从而实现精准推荐。自20世纪90年代提出以来,协同过滤算法已经在电子商务、社交媒体、音乐视频等多个领域中广泛应用,取得了显著的推荐效果。协同过滤算法主要分为基于用户的协同过滤和基于物品的协同过滤两种。基于用户的协同过滤通过比较用户间的相似性,
- 协同过滤推荐算法
禺垣
机器学习笔记算法机器学习推荐算法算法机器学习
协同过滤(CollaborativeFiltering)是推荐系统中最经典的算法之一,其核心思想是“物以类聚,人以群分”,即通过分析用户的历史行为数据,找到与目标用户相似的用户群体或相似的物品,从而为目标用户推荐他们可能感兴趣的物品。一、基于用户的协同过滤(User-BasedCF)核心思想:找到与目标用户兴趣相似的其他用户(“邻居”),将这些邻居喜欢的物品推荐给目标用户。步骤:s1.计算用户
- 【Python使用】嘿马推荐系统全知识和项目开发教程第2篇:1.4 案例--基于协同过滤的电影推荐,1.5 推荐系统评估
python后端
教程总体简介:1.1推荐系统简介学习目标1推荐系统概念及产生背景2推荐系统的工作原理及作用3推荐系统和Web项目的区别1.3推荐算法1推荐模型构建流程2最经典的推荐算法:协同过滤推荐算法(CollaborativeFiltering)3相似度计算(SimilarityCalculation)4协同过滤推荐算法代码实现:二根据用户行为数据创建ALS模型并召回商品2.0用户行为数据拆分2.1预处理be
- JAVA推荐系统-基于用户和物品协同过滤的电影推荐
泰山AI
技术交流推荐算法java算法
系统原理该系统使用java编写的基于用户的协同过滤算法(UserCF)和基于物品(此应用中指电影)的协同过滤(ItemtemCF)利用统计学的相关系数经常皮尔森(pearson)相关系数计算相关系数来实现千人千面的推荐系统。协同过滤算法协同过滤推荐算法是诞生最早,并且较为著名的推荐算法。主要的功能是预测和推荐。协同过滤(CollaborativeFiltering,简写CF)是推荐系统最重要得思想
- 以java电商平台为例,做一个基于物品的协同推荐算法
浪工程序设计合作
软件开发教学java推荐算法开发语言
博主介绍:全网个人号和企业号粉丝40W+,每年辅导几千名大学生较好的完成毕业设计,专注计算机软件领域的项目研发,不断的进行新技术的项目实战⭐️热门专栏推荐订阅⭐️订阅收藏起来,防止下次找不到有成品项目也可定制,需求的各位可以先收藏起来文章结尾有联系名片找我在电商平台中,基于物品的协同过滤(Item-basedCollaborativeFiltering)是一种常用的推荐算法。它的核心思想是:如果用
- AI推荐系统演进史:从协同过滤到图神经网络与强化学习的融合
万米商云
人工智能神经网络深度学习
每一次滑动手机屏幕,电商平台向你推荐心仪商品的背后,是超过百亿量级的浮点运算。从早期的“猜你喜欢”到如今的“比你更懂你”,商品推荐引擎已悄然完成从简单规则到深度智能的技术跃迁。一、协同过滤:推荐系统的基石与演进协同过滤(CollaborativeFiltering)作为推荐系统的“古典方法”,其核心思想朴素却有力:相似的人喜欢相似的东西。早期的矩阵分解技术(如2009年的SVD算法)将用户-物品交
- 协同过滤(Collaborative Filtering)与基于内容过滤(Content-Based Filtering)
土豆羊626
机器学习算法机器学习人工智能
以下是协同过滤(CollaborativeFiltering)与基于内容过滤(Content-BasedFiltering)的对比分析:协同过滤协同过滤的核心思想是通过用户的历史行为(如评分、点击、购买等)发现用户之间的相似性或物品之间的相似性,从而推荐用户可能感兴趣的物品。它分为两类:基于用户的协同过滤和基于物品的协同过滤。基于用户的协同过滤通过找到与目标用户兴趣相似的其他用户,推荐这些用户喜欢
- 【推荐算法】推荐系统核心算法深度解析:协同过滤 Collaborative Filtering
白熊188
推荐算法算法机器学习人工智能推荐算法推荐
推荐系统核心算法深度解析:协同过滤一、协同过滤的算法逻辑协同过滤的两种实现方式二、算法原理与数学推导1.相似度计算关键公式2.矩阵分解(MF)进阶三、模型评估1.准确性指标2.排序指标(Top-N推荐)3.多样性&新颖性四、应用案例五、面试常见问题六、详细优缺点优点缺点七、优化方向总结一、协同过滤的算法逻辑协同过滤的核心思想是利用群体智慧:假设:相似用户对物品有相似偏好,相似物品会被相似用户喜欢。
- 协同过滤算法本质?
非小号
AI算法机器学习
协同过滤算法(CollaborativeFilteringAlgorithm)的核心实质是利用用户群体的行为数据(如评分、点击、购买等),挖掘用户与物品之间的潜在关联,从而实现个性化推荐。其核心思想可以概括为以下两点:一、基于群体行为的“协同性”协同过滤的本质是通过观察群体行为来推断个体偏好,而非依赖物品本身的属性或用户的显式特征(如电影类型、用户年龄等)。具体表现为:用户-用户协同(User-B
- 【自然语言处理与大模型】大模型(LLM)基础知识⑤
小oo呆
【自然语言处理与大模型】自然语言处理人工智能
(1)如何保证大模型生成内容的合规性?从训练数据净化、RLHF对齐、实时过滤三层技术防线入手,同时建立人工审核-用户反馈-版本回滚的流程闭环,最后通过法规映射和日志审计满足制度合规。核心是让技术防控(如Fine-tuning+Post-filtering)与人类监督形成交叉验证,而非依赖单一手段。技术层面:技术手段描述强化学习与指令微调通过强化学习(如RLHF)或指令微调,让模型更倾向于生成合规、
- Customizable Cardwalls Crack
SEO-狼术
netDelphi控件javascript
CustomizableCardwallsCrackAssembla’sCardwallticketviewprovidesavisual,drag-and-dropinterfacewithfilteringandone-clickdetailaccesstoenhancecollaboration.Assemblaisapowerfulweb-basedplatformthatintegrat
- 基于Huber函数和最大相关熵的抗差滤波算法
bubiyoushang888
matlab
最大熵滤波(MaximumEntropyFiltering)常用于信号处理中的谱估计和噪声抑制,尤其适用于短数据序列的高分辨率谱分析。一、最大熵滤波算法原理核心思想:在满足已知自相关函数约束的条件下,使信号的熵最大化。数学形式:通过自回归(AR)模型对信号建模,估计模型参数(滤波器系数)。关键公式:自回归模型:x(n)=−∑k=1pap(k)x(n−k)+w(n)x(n)=-\sum_{k=1}^
- VBA 解除工作表密码
chunyu.wu
VBAVBA
工作表加密密码如果忘记可以使用如下方法进行破解1.破解工作簿中所有工作表密码在标准模块中贴入下记代码并执行OptionExplicitSubWsUnlock()DimwsAsWorksheetForEachwsInWorksheetsws.ProtectAllowFiltering:=Truews.UnprotectNextEndSub破解单个工作表密码如果要破解单个工作表,可以在VBE中Ctrl
- 协调过滤算法-电影推荐
银河以北呀
机器学习sklearn
协调过滤算法-电影推荐协调过滤概述协同过滤(CollaborativeFiltering)是推荐系统中一种非常基础的方法,它主要分为两个方面:实时的协同作用和预先的过滤处理。在线协同指的是利用实时数据来识别用户可能感兴趣的商品,而离线过滤则是筛选掉一些不太适合推荐的内容,例如那些评分较低的商品,或者用户已经购买过的商品。在协同过滤的应用中,我们通常面对的是m个商品和m个用户的数据集,但只有部分用户
- uDistil-Whisper:低数据场景下基于无标签数据过滤的知识蒸馏方法
tongxianchao
人工智能机器学习深度学习
uDistil-Whisper:Label-FreeDataFilteringforKnowledgeDistillationinLow-DataRegimes会议:2025年NAACL机构:卡内基梅降大学Abstract近期研究通过伪标签(pseudo-labels)将Whisper的知识蒸馏到小模型中,在模型体积减小50%的同时展现出优异性能,最终得到高效、轻量的专用模型。然而,基于伪标签的蒸
- python数据分析实验4:基于协同过滤的电影推荐系统从原理到代码实战
HowserSu
python数据分析推荐算法
一、引言在大数据时代,推荐系统已成为解决信息过载的重要工具。其中,协同过滤(CollaborativeFiltering)作为推荐系统的经典算法,通过分析用户与物品的交互行为,能够精准捕捉用户偏好,广泛应用于电商、流媒体等场景。本文将基于Python实现一个电影推荐系统,详细讲解用户-用户协同过滤(UBCF)和物品-物品协同过滤(IBCF)的核心逻辑,并提供完整的代码示例。二、技术原理:协同过滤核
- OpenCV 笔记(38):同态滤波
Java与Android技术栈
opencv笔记人工智能计算机视觉
1.同态滤波同态滤波(HomomorphicFiltering)是一种经典的图像增强方法,主要用于同时校正图像的非均匀光照和增强细节对比度。同态滤波的核心思想是将图像的光照分量(低频)和反射分量(高频)分离,并分别进行调整,最终改善图像的对比度和细节。2.算法流程2.1图像模型图像可表示为光照分量和反射分量的乘积:其中::入射光照分量(illumination),通常变化平缓,包含低频信息。:物体
- 【论文阅读】Attentive Collaborative Filtering:
hongjianMa
#多模态-论文阅读论文阅读推荐系统推荐算法多模态自注意力机制深度学习
AttentiveCollaborativeFiltering:MultimediaRecommendationwithItem-andComponent-LevelAttentionAttentiveCollaborativeFiltering(ACF)、隐式反馈推荐、注意力机制、贝叶斯个性化排序标题翻译:注意力协同过滤:基于项目和组件级注意力的多媒体推荐原文地址:点这里摘要多媒体内容正主导着当
- 图像处理与计算机视觉的经典书籍
2401_87556630
图像处理计算机视觉人工智能
[1960Kalman]ANewApproachtoLinearFilteringandPredictionProblemsKalman[1970]Least-squaresestimation_fromGausstoKalman[1997SPIE]ANewExtensionoftheKalmanFiltertoNonlinearSystem[2000]TheUnscentedKalmanFilt
- Filtering fanotify events with BPF
mounter625
Linuxkernellinuxkernel网络
Linuxsystemscanhavelargefilesystems;tryingtokeepupwiththestreamoffanotifyfilesystem-monitoringnotificationsforthemcanbeastruggle.Fanotifyisoneofafewwaystomonitoraccessestofilesystemsprovidedbythekerne
- 嵌入式十一种常用滤波算法
^Lek
嵌入式算法算法计算机视觉人工智能单片机c语言stm32
文章目录一、限幅滤波算法二、中位值滤波法三、算数平均滤波四、滑动窗口滤波器(递归平均滤波方法)五、中位值平均滤波法(防脉冲干扰平均滤波法)六一阶滞后滤波法(低通数字滤波)七、加权递推平均滤波法八、消抖滤波法九、带通滤波十、卡尔曼滤波十一、小波变换滤波 滤波(Filtering)是信号处理和图像处理中常用的一种技术,用于去除信号中的噪声、平滑信号或突出信号中的某些特征。滤波算法可以应用于多个领域,
- 滤波算法——一阶滤波
TunnyLand
算法算法
文章目录1.算法原理2.代码实现滤波算法——二阶滤波1.算法原理滤波(Wavefiltering)是将信号中特定波段频率滤除的操作,是抑制和防止干扰的一项重要措施。一阶低通滤波,又叫一阶惯性滤波,或一阶低通滤波。是使用软件编程实现普通硬件RC低通滤波器的功能。一阶低通滤波法采用本次采样值与上次滤波输出值进行加权,得到有效滤波值,使得输出对输入有反馈作用。一阶低通滤波的算法公式为:Y(n)=αX(n
- 论文阅读笔记—— AdvFilter: Predictive Perturbation-aware Filtering against Adversarial Attack via Multi-d L
jessIoss
论文阅读笔记DeepFake论文阅读笔记
文章目录AdvFilter:PredictivePerturbation-awareFilteringagainstAdversarialAttackviaMulti-domainLearning背景贡献相关工作对抗性去噪防御对抗性训练防御其他对抗性防御方法一般图像去噪创新公式方法多域学习实验AdvFilter:PredictivePerturbation-awareFilteringagains
- Fiori学习专题二十三: Filtering
孤灯淡茶
Fiori学习学习windows
这节课我们将针对list增加一个筛选功能。1.首先改造下InvoiceList.view.xml,加入id方便找到它以及标签/Invoices}">invoiceListTitle}"/>...2.修改InvoiceList.controller.jssap.ui.define(["sap/ui/core/mvc/Controller","sap/ui/model/json/JSONModel",
- Pipe-Filter
他们说快写一首情歌
GOPipe-Filter
Pipe-Filter数据数据//使用Go实现软甲架构的模式//架构模式设计较大的可复用方案//23种设计模式//pipe-filter//AdsSSP(请求上来)->RequestParsing解析请求->ParamsProcessing处理参数->Verification认证身份->Filtering过滤->Ranking对选出的广告排序->Filling填充//Pump->Filter->F
- 协同过滤(Collaborative Filtering)
pljnb
推荐算法基础算法协同过滤
协同过滤(CollaborativeFiltering)算法原理一、基于记忆的协同过滤(Memory-BasedCF)1.用户-用户协同过滤(User-BasedCF)核心思想通过计算用户之间的相似度,利用相似用户的评分预测目标用户的兴趣。算法步骤相似度计算使用余弦相似度或皮尔逊相关系数:sim(u,v)=∑i∈Iuv(rui−rˉu)(rvi−rˉv)∑i∈Iuv(rui−rˉu)2∑i∈Iuv
- 基于协同过滤算法的美食推荐系统
sj52abcd
数据库人工智能美食信息可视化毕业设计pythondjango
PYTHON,Mysql,协同过滤算法,VUE,flask,django算法原理基于物品的协同过滤算法(Item-basedCollaborativeFiltering)是一种常用的推荐算法。它的核心思想是通过计算物品之间的相似度,找到与用户已喜欢物品相似的其他物品,并将这些物品推荐给用户。在美食推荐系统中,我们可以将菜品看作物品,根据用户对菜品的评分数据来计算菜品之间的相似度。实现步骤数据准备从
- 搜广推校招面经七十一
Y1nhl
搜广推面经数学建模深度学习推荐算法搜索算法广告算法人工智能
滴滴算法工程师面经一、矩阵分解的原理与优化意义矩阵分解在推荐系统中是一个非常核心的方法,尤其是在协同过滤(CollaborativeFiltering)中。我们可以通过用户对物品的评分行为来推测用户的喜好,从而推荐他们可能喜欢的内容。1.1.直观理解:补全稀疏矩阵在推荐系统中,我们常见的用户-物品评分矩阵RRR是一个非常稀疏的矩阵:用户\物品电影A电影B电影C电影D用户15?3?用户2?4?2用户
- linux怎么切换不同版本的r,在linux中用同一个版本的R 同时安装 Seurat2 和 Seurat3
weixin_39964899
linux怎么切换不同版本的r
在linux中用同一个版本的R同时安装Seurat2和Seurat3Seurat作为单细胞分析中的重量级R包,有多好用用,用过的人都知道。Seurat分析流程基本涵盖了单细胞分析中的所有常见分析方法,包括filtering,tSNE,UMAP降维及画图等。还有一个重量级功能就是矫正不同实验之间的批次效应。然而Seurat2和Seurat3的矫正方法完全不一样,得到的结果也不一致。Seurat2是基
- 对股票分析时要注意哪些主要因素?
会飞的奇葩猪
股票 分析 云掌股吧
众所周知,对散户投资者来说,股票技术分析是应战股市的核心武器,想学好股票的技术分析一定要知道哪些是重点学习的,其实非常简单,我们只要记住三个要素:成交量、价格趋势、振荡指标。
一、成交量
大盘的成交量状态。成交量大说明市场的获利机会较多,成交量小说明市场的获利机会较少。当沪市的成交量超过150亿时是强市市场状态,运用技术找综合买点较准;
- 【Scala十八】视图界定与上下文界定
bit1129
scala
Context Bound,上下文界定,是Scala为隐式参数引入的一种语法糖,使得隐式转换的编码更加简洁。
隐式参数
首先引入一个泛型函数max,用于取a和b的最大值
def max[T](a: T, b: T) = {
if (a > b) a else b
}
因为T是未知类型,只有运行时才会代入真正的类型,因此调用a >
- C语言的分支——Object-C程序设计阅读有感
darkblue086
applec框架cocoa
自从1972年贝尔实验室Dennis Ritchie开发了C语言,C语言已经有了很多版本和实现,从Borland到microsoft还是GNU、Apple都提供了不同时代的多种选择,我们知道C语言是基于Thompson开发的B语言的,Object-C是以SmallTalk-80为基础的。和C++不同的是,Object C并不是C的超集,因为有很多特性与C是不同的。
Object-C程序设计这本书
- 去除浏览器对表单值的记忆
周凡杨
html记忆autocompleteform浏览
&n
- java的树形通讯录
g21121
java
最近用到企业通讯录,虽然以前也开发过,但是用的是jsf,拼成的树形,及其笨重和难维护。后来就想到直接生成json格式字符串,页面上也好展现。
// 首先取出每个部门的联系人
for (int i = 0; i < depList.size(); i++) {
List<Contacts> list = getContactList(depList.get(i
- Nginx安装部署
510888780
nginxlinux
Nginx ("engine x") 是一个高性能的 HTTP 和 反向代理 服务器,也是一个 IMAP/POP3/SMTP 代理服务器。 Nginx 是由 Igor Sysoev 为俄罗斯访问量第二的 Rambler.ru 站点开发的,第一个公开版本0.1.0发布于2004年10月4日。其将源代码以类BSD许可证的形式发布,因它的稳定性、丰富的功能集、示例配置文件和低系统资源
- java servelet异步处理请求
墙头上一根草
java异步返回servlet
servlet3.0以后支持异步处理请求,具体是使用AsyncContext ,包装httpservletRequest以及httpservletResponse具有异步的功能,
final AsyncContext ac = request.startAsync(request, response);
ac.s
- 我的spring学习笔记8-Spring中Bean的实例化
aijuans
Spring 3
在Spring中要实例化一个Bean有几种方法:
1、最常用的(普通方法)
<bean id="myBean" class="www.6e6.org.MyBean" />
使用这样方法,按Spring就会使用Bean的默认构造方法,也就是把没有参数的构造方法来建立Bean实例。
(有构造方法的下个文细说)
2、还
- 为Mysql创建最优的索引
annan211
mysql索引
索引对于良好的性能非常关键,尤其是当数据规模越来越大的时候,索引的对性能的影响越发重要。
索引经常会被误解甚至忽略,而且经常被糟糕的设计。
索引优化应该是对查询性能优化最有效的手段了,索引能够轻易将查询性能提高几个数量级,最优的索引会比
较好的索引性能要好2个数量级。
1 索引的类型
(1) B-Tree
不出意外,这里提到的索引都是指 B-
- 日期函数
百合不是茶
oraclesql日期函数查询
ORACLE日期时间函数大全
TO_DATE格式(以时间:2007-11-02 13:45:25为例)
Year:
yy two digits 两位年 显示值:07
yyy three digits 三位年 显示值:007
- 线程优先级
bijian1013
javathread多线程java多线程
多线程运行时需要定义线程运行的先后顺序。
线程优先级是用数字表示,数字越大线程优先级越高,取值在1到10,默认优先级为5。
实例:
package com.bijian.study;
/**
* 因为在代码段当中把线程B的优先级设置高于线程A,所以运行结果先执行线程B的run()方法后再执行线程A的run()方法
* 但在实际中,JAVA的优先级不准,强烈不建议用此方法来控制执
- 适配器模式和代理模式的区别
bijian1013
java设计模式
一.简介 适配器模式:适配器模式(英语:adapter pattern)有时候也称包装样式或者包装。将一个类的接口转接成用户所期待的。一个适配使得因接口不兼容而不能在一起工作的类工作在一起,做法是将类别自己的接口包裹在一个已存在的类中。 &nbs
- 【持久化框架MyBatis3三】MyBatis3 SQL映射配置文件
bit1129
Mybatis3
SQL映射配置文件一方面类似于Hibernate的映射配置文件,通过定义实体与关系表的列之间的对应关系。另一方面使用<select>,<insert>,<delete>,<update>元素定义增删改查的SQL语句,
这些元素包含三方面内容
1. 要执行的SQL语句
2. SQL语句的入参,比如查询条件
3. SQL语句的返回结果
- oracle大数据表复制备份个人经验
bitcarter
oracle大表备份大表数据复制
前提:
数据库仓库A(就拿oracle11g为例)中有两个用户user1和user2,现在有user1中有表ldm_table1,且表ldm_table1有数据5千万以上,ldm_table1中的数据是从其他库B(数据源)中抽取过来的,前期业务理解不够或者需求有变,数据有变动需要重新从B中抽取数据到A库表ldm_table1中。
- HTTP加速器varnish安装小记
ronin47
http varnish 加速
上午共享的那个varnish安装手册,个人看了下,有点不知所云,好吧~看来还是先安装玩玩!
苦逼公司服务器没法连外网,不能用什么wget或yum命令直接下载安装,每每看到别人博客贴出的在线安装代码时,总有一股羡慕嫉妒“恨”冒了出来。。。好吧,既然没法上外网,那只能麻烦点通过下载源码来编译安装了!
Varnish 3.0.4下载地址: http://repo.varnish-cache.org/
- java-73-输入一个字符串,输出该字符串中对称的子字符串的最大长度
bylijinnan
java
public class LongestSymmtricalLength {
/*
* Q75题目:输入一个字符串,输出该字符串中对称的子字符串的最大长度。
* 比如输入字符串“google”,由于该字符串里最长的对称子字符串是“goog”,因此输出4。
*/
public static void main(String[] args) {
Str
- 学习编程的一点感想
Cb123456
编程感想Gis
写点感想,总结一些,也顺便激励一些自己.现在就是复习阶段,也做做项目.
本专业是GIS专业,当初觉得本专业太水,靠这个会活不下去的,所以就报了培训班。学习的时候,进入状态很慢,而且当初进去的时候,已经上到Java高级阶段了,所以.....,呵呵,之后有点感觉了,不过,还是不好好写代码,还眼高手低的,有
- [能源与安全]美国与中国
comsci
能源
现在有一个局面:地球上的石油只剩下N桶,这些油只够让中国和美国这两个国家中的一个顺利过渡到宇宙时代,但是如果这两个国家为争夺这些石油而发生战争,其结果是两个国家都无法平稳过渡到宇宙时代。。。。而且在战争中,剩下的石油也会被快速消耗在战争中,结果是两败俱伤。。。
在这个大
- SEMI-JOIN执行计划突然变成HASH JOIN了 的原因分析
cwqcwqmax9
oracle
甲说:
A B两个表总数据量都很大,在百万以上。
idx1 idx2字段表示是索引字段
A B 两表上都有
col1字段表示普通字段
select xxx from A
where A.idx1 between mmm and nnn
and exists (select 1 from B where B.idx2 =
- SpringMVC-ajax返回值乱码解决方案
dashuaifu
AjaxspringMVCresponse中文乱码
SpringMVC-ajax返回值乱码解决方案
一:(自己总结,测试过可行)
ajax返回如果含有中文汉字,则使用:(如下例:)
@RequestMapping(value="/xxx.do") public @ResponseBody void getPunishReasonB
- Linux系统中查看日志的常用命令
dcj3sjt126com
OS
因为在日常的工作中,出问题的时候查看日志是每个管理员的习惯,作为初学者,为了以后的需要,我今天将下面这些查看命令共享给各位
cat
tail -f
日 志 文 件 说 明
/var/log/message 系统启动后的信息和错误日志,是Red Hat Linux中最常用的日志之一
/var/log/secure 与安全相关的日志信息
/var/log/maillog 与邮件相关的日志信
- [应用结构]应用
dcj3sjt126com
PHPyii2
应用主体
应用主体是管理 Yii 应用系统整体结构和生命周期的对象。 每个Yii应用系统只能包含一个应用主体,应用主体在 入口脚本中创建并能通过表达式 \Yii::$app 全局范围内访问。
补充: 当我们说"一个应用",它可能是一个应用主体对象,也可能是一个应用系统,是根据上下文来决定[译:中文为避免歧义,Application翻译为应
- assertThat用法
eksliang
JUnitassertThat
junit4.0 assertThat用法
一般匹配符1、assertThat( testedNumber, allOf( greaterThan(8), lessThan(16) ) );
注释: allOf匹配符表明如果接下来的所有条件必须都成立测试才通过,相当于“与”(&&)
2、assertThat( testedNumber, anyOf( g
- android点滴2
gundumw100
应用服务器android网络应用OSHTC
如何让Drawable绕着中心旋转?
Animation a = new RotateAnimation(0.0f, 360.0f,
Animation.RELATIVE_TO_SELF, 0.5f, Animation.RELATIVE_TO_SELF,0.5f);
a.setRepeatCount(-1);
a.setDuration(1000);
如何控制Andro
- 超简洁的CSS下拉菜单
ini
htmlWeb工作html5css
效果体验:http://hovertree.com/texiao/css/3.htmHTML文件:
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>简洁的HTML+CSS下拉菜单-HoverTree</title>
- kafka consumer防止数据丢失
kane_xie
kafkaoffset commit
kafka最初是被LinkedIn设计用来处理log的分布式消息系统,因此它的着眼点不在数据的安全性(log偶尔丢几条无所谓),换句话说kafka并不能完全保证数据不丢失。
尽管kafka官网声称能够保证at-least-once,但如果consumer进程数小于partition_num,这个结论不一定成立。
考虑这样一个case,partiton_num=2
- @Repository、@Service、@Controller 和 @Component
mhtbbx
DAOspringbeanprototype
@Repository、@Service、@Controller 和 @Component 将类标识为Bean
Spring 自 2.0 版本开始,陆续引入了一些注解用于简化 Spring 的开发。@Repository注解便属于最先引入的一批,它用于将数据访问层 (DAO 层 ) 的类标识为 Spring Bean。具体只需将该注解标注在 DAO类上即可。同时,为了让 Spring 能够扫描类
- java 多线程高并发读写控制 误区
qifeifei
java thread
先看一下下面的错误代码,对写加了synchronized控制,保证了写的安全,但是问题在哪里呢?
public class testTh7 {
private String data;
public String read(){
System.out.println(Thread.currentThread().getName() + "read data "
- mongodb replica set(副本集)设置步骤
tcrct
javamongodb
网上已经有一大堆的设置步骤的了,根据我遇到的问题,整理一下,如下:
首先先去下载一个mongodb最新版,目前最新版应该是2.6
cd /usr/local/bin
wget http://fastdl.mongodb.org/linux/mongodb-linux-x86_64-2.6.0.tgz
tar -zxvf mongodb-linux-x86_64-2.6.0.t
- rust学习笔记
wudixiaotie
学习笔记
1.rust里绑定变量是let,默认绑定了的变量是不可更改的,所以如果想让变量可变就要加上mut。
let x = 1; let mut y = 2;
2.match 相当于erlang中的case,但是case的每一项后都是分号,但是rust的match却是逗号。
3.match 的每一项最后都要加逗号,但是最后一项不加也不会报错,所有结尾加逗号的用法都是类似。
4.每个语句结尾都要加分