- 2018年中南大学中英翻译
某翁
参考:20180827235856533.jpg【1】机器学习理论表明,机器学习算法能从有限个训练集样本上得到较好的泛化【1】Machinelearningtheoryshowsthatmachinelearningalgorithmcangeneralizewellfromfinitetrainingsetsampleslimited有限的infinite无限的【2】这似乎违背了一些基本的逻辑准
- xgboost原理
茶尽
阅读XGBoost与BoostedTree基学习器:CART每个叶子节点上面有一个分数不够厉害,所以找一个更强的模型treeensemble对每个样本的预测结果是每棵树预测分数的和目标函数采用boosting(additivetraining)方法,每一次都加入一个新的函数。依赖每个数据点上的误差函数的一阶导数和二阶导(区别于GBDT)。树的复杂度复杂度包含了一棵树里面的叶子个数和输出分数的L2模
- BEYOND BINARY REWARDS: TRAINING LMS TOREASON ABOUT THEIR UNCERTAINTY
樱花的浪漫
大模型与智能体对抗生成网络与动作识别强化学习人工智能语言模型自然语言处理机器学习深度学习
https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe80https://gist.github.com/josherich/8a30dbf3d6ae0cae1048c3331f38fe801引言与此担忧一致,研究表明,即使最初校准良好的大型语言模型(LLMs)在RL训练后也会变得过度自信(Lengetal.,2
- FPGA知识基础之--在线调试工具
土包子=-=
FPGA学习fpga开发
文章目录前言一、定义二、特点三、功能3.1信号监控:3.2信号修改:3.3断点设置:3.4变量监视:3.5性能分析:3.6故障注入:四、主要的在线调试工具4.1Xilinx的VIO和ILA4.1.1介绍4.1.2配置步骤4.1.3使用场景4.1.4优势4.2Altera的In-SystemMemoryContentEditor4.2.1介绍4.2.2配置步骤4.2.3使用场景4.3QuartusI
- 【c++】问答系统代码改进解析:新增日志系统提升可维护性——关于我用AI编写了一个聊天机器人……(14)
gfdhy
c++开发语言算法人工智能c语言tf-idf
在软件开发中,代码的迭代优化往往从提升可维护性、可追踪性入手。本文将详细解析新增的日志系统改进,以及这些改进如何提升系统的实用性和可调试性。一、代码整体背景代码实现了一个基于TF-IDF算法的问答系统,核心功能包括:加载训练数据(training_data.txt)构建问答库提取中英文关键词(支持GBK编码中文处理)通过精确匹配和TF-IDF相似度计算返回最佳答案支持基础交互命令(help/top
- Pytorch混合精度训练最佳实践
贝塔西塔
工程经验pytorch人工智能深度学习混合精度模型加速
混合精度训练(MixedPrecisionTraining)是一种通过结合单精度(FP32)和半精度(FP16/FP8)计算来加速训练、减少显存占用的技术。它在保持模型精度的同时,通常能带来2-3倍的训练速度提升,并减少约50%的显存使用,是平衡训练效率与数值稳定性的核心技术,尤其在大模型训练中不可或缺。以下从GradScaler底层逻辑、避坑技巧(含NaN解决方案)、PyTorchLightni
- 学习日记-机器学习2-线性回归/成本函数
目录4LinerRegressionModel线性回归模型5costFunction成本函数4LinerRegressionModel线性回归模型Thelinearregressionmodelisaparticulartypeofsupervisedlearningmodel.TerminologyTrainingset(训练集):DatausedtotrainthemodelNotationx
- P1217 [USACO1.5] 回文质数 Prime Palindromes
张辰宇-
算法
题目描述因为151既是一个质数又是一个回文数(从左到右和从右到左是看一样的),所以151是回文质数。写一个程序来找出范围[a,b](5≤ausingnamespacestd;boolhuiwen(intn){ints=0,k=n;while(k!=0){s*=10;s+=k%10;k/=10;}if(s==n)returntrue;returnfalse;}boolzhishu(intn){for
- 洛谷刷题6.22&&6.21
圆头猫爹
刷题记录算法leetcode数据结构
P2910[USACO08OPEN]ClearAndPresentDangerS代码思路总结(基于洛谷P2910问题)该代码解决的是图上的最短路径累积问题:给定一个有向图(或无向图,代码中未区分)和一系列必须按顺序访问的点,计算从序列起点到终点依次访问相邻点所走的最短路径总长度。核心步骤:输入处理:读入点数n和访问序列长度m。读入长度为m的访问序列v[](v[1]是起点,v[m]是终点)。读入n×
- 牛崽姿的ScalerTalk第四轮新概念朗读持续力训练Day59 20181205补作业(20181208)
欢_45f4
练习材料:Ourdog,Rex,usedtositoutsideourfrontgateandbark.Everytimehewantedtocomeintothegardenhewouldbarkuntilsomeoneopenedthegate.Astheneighbourscomplainedofthenoise,myhusbandspentweekstraininghimtopresshi
- ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 384]
我是如此相信_
人工智能深度学习
这个错误通常发生在使用PyTorch训练神经网络时,输入数据维度不符合预期,不能batch_size整除。可能是输入的数据有剩余但不足以达到batch_size所导致的查阅资料发现:在torch.utils.data这个包中,DataLoader类下有一参数为:drop_last–settoTruetodropthelastincompletebatch,ifthedatasetsizeisnot
- 使用多块AMD GPU通过Megatron-DeepSpeed进行大型语言模型的预训练
109702008
#ROCm语言模型人工智能学习
Pre-trainingalargelanguagemodelwithMegatron-DeepSpeedonmultipleAMDGPUs2024年1月24日,作者:DouglasJia在这篇博客中,我们将向你展示如何使用Megatron-DeepSpeed框架在多块AMDGPU上预训练GPT-3模型。我们还将展示如何使用你预训练的模型执行文本生成任务的推理。什么是Megatron-DeepSp
- P3864 [USACO1.2] 命名那个数字 Name That Number
zaiyang遇见
#【Guide】Chapter1入门信息学奥赛程序设计竞赛C/C++USACO穷举
题目描述在威斯康辛州牛守志大农场经营者之中,都习惯于请会计部门用连续数字给母牛打上烙印。但是,母牛本身并没感到这个系统的便利,它们更喜欢用它们喜欢的名字来呼叫它们的同伴,而不是用像这个的语句"C’mon,#4364,getalong."。请写一个程序来帮助可怜的牧牛工将一只母牛的烙印编号翻译成一个可能的名字。因为母牛们现在都有手机了,使用标准的按键的排布来把将数目翻译为文字:(除了“Q”和“Z”)
- PyTorch Lightning(PL)通过约定的生命周期方法自动管理训练流程。
小香猪6688
pytorch人工智能python
一、PyTorchLightning的“隐形流程”PL是一个基于PyTorch的轻量级训练框架,它通过约定优于配置的原则,定义了一系列生命周期钩子方法(如training_step、validation_step、configure_optimizers等)。当你调用trainer.fit(model)时,PL会自动按顺序调用这些方法,形成一个“隐形的主流程”。关键生命周期方法(按调用顺序):初始
- 每日一题7.22
P10450[USACO03MAR]BestCowFencesG-洛谷题目描述原题来自:USACO2003Mar.Green给定一个长度为n的非负整数序列A,求一个平均数最大的,长度不小于L的子段。输入格式第一行用空格分隔的两个整数n和L;第二行为n个用空格隔开的非负整数,表示Ai。输出格式输出一个整数,表示这个平均数的1000倍。不用四舍五入,直接输出。输入输出样例输入#1复制106642103
- 每日一题7.2
渣呵
每日一题图论算法c++
P2863[USACO06JAN]TheCowPromS-洛谷算是一个tarjan的板子题#include#include#include#includeusingnamespacestd;constintN=1e4+5;intdfn[N],low[N],s[N],belong[N];vectorg[N];intcnt,top,num,ans,flag;boolins[N];voidtarjan(
- 大模型训练中的“训练阶段”(如Pre-training、SFT、RLHF等)与“微调技术”
老兵发新帖
人工智能深度学习机器学习
大模型训练中的“训练阶段”(如Pre-training、SFT、RLHF等)与“微调技术”(如Full-tuning、Freeze-tuning、LoRA、QLoRA)是两类不同维度的概念,二者共同构成模型优化的完整流程。以下是二者的关系解析及技术对照:一、训练阶段的核心流程与目标预训练(Pre-training)目标:在无标注通用数据(如互联网文本)上训练模型,学习语言、视觉等通用特征。微调技术
- 基于小样本学习的图像分类综述
cdyyyyyyy
学习分类机器学习
目录引言基本概念小样本学习方法分类1、数据增强2、迁移学习3、元学习小样本学习主流方法1、基于度量的小样本学习2、基于Pretraining+FineTuning的方法3、基于元学习的小样本学习总结引言因为课程设计要求,所以进行了关于小样本学习的调研。目前小样本学习还是一个比较热门的研究,很多关于小样本学习的论文也陆续发表。本文只是一个概述,具体方法研究还有待深入。基本概念小样本学习(FSL:Fe
- 【BFS/思维】P1825 [USACO11OPEN] Corn Maze S
guozhetao
主题库题解宽度优先算法图论c++javaspringpython
题意去年秋天,农夫约翰带着奶牛们参观了一个玉米迷宫。但这不是一个普通的玉米迷宫:它有几个重力驱动的传送滑梯,可以让奶牛瞬间从迷宫中的一个点传送到另一个点。滑梯是双向的:奶牛可以瞬间从滑梯的起点滑到终点,或者从终点滑到起点。如果奶牛踩到滑梯的任一端,她必须使用滑梯。玉米迷宫的外部完全由玉米包围,只有一个出口。迷宫可以用一个N×MN\timesMN×M(2≤N≤3002\leqN\leq3002≤N≤
- 跨境卖家被告TRO侵权怎么办,知识产权侵权的解决方案
大胖不太胖
零售经验分享人工智能
自2014年以来,到2023年5月为止,跨境卖家被权利人委托律所起诉的TRO案件数量呈指数增长,已经形成了一条庞大的产业链。对于卖家来说,跨境TRO是什么,后果有哪些,如何解决,成为卖家必须了解的TRO知识。一、TRO是什么1.基础概念1.1概述TRO全名TemporaryRestrainingOrder,又称临时禁令。TRO是一项紧急禁令,在紧急情况下,在法庭,为了保护原告(权利人)的知识产权,
- 【大语言模型基础】GPT(Generative Pre-training )生成式无监督预训练模型原理
前言ELMo:将上下文当作特征,但是无监督的语料和我们真实的语料还是有区别的,不一定符合我们特定的任务,是一种双向的特征提取。OpenAIGPT:通过transformerdecoder学习出来一个语言模型,不是固定的,通过任务fine-tuning,用transfomer代替ELMo的LSTM。OpenAIGPT其实就是缺少了encoder的transformer:当然也没了encoder与de
- 【深度强化学习】MIP-DQN 实现案例(完整Python代码)
目录MIP-DQN算法概述建模基础训练阶段(Training)部署阶段(OnlineExecution)DNN网络转化为MIP表达式性能指标完整Python代码实现主函数:random_generator_battery模型函数:MIP_DQN基础/专用库包安装模型运行(完整Python代码)参数设置函数:Parameters参考本博客根据论文《Optimalenergysystemschedul
- Lecture 5:Training versus Testing
薛家掌柜的
回顾一下前四个Lecture,Lecture1讲的是找一个使得(也就是),Lecture2讲的是使得,Lecture3讲的是机器学习的分类,Lecture4讲的是让。那么,我们就有两个核心问题需要解决了。我们如何保证尽可能地靠近?我们如何使得足够小?而在这两个问题里面,假设集大小又扮演着什么样的角色?应该多大呢?如果是一个很小的,能够满足,但是可选的假设又太少了。如果是一个很大的,可选的假设很多,
- AI Agent从零到精通:深度解析Workflow、Prompt、Multi-Agent Systems和RL Training
爱看烟花的码农
AIGCNLP人工智能prompt
1.AI智能体简介:从概念到应用1.1什么是AI智能体?AI智能体是一种自主智能体,能够根据用户输入的目标,自主规划、执行和优化任务,最终生成结果。它不同于传统聊天模型(如ChatGPT)的单次回答能力,而是能处理多步骤、工具依赖、动态调整的复杂任务。例如:任务:用户要求“撰写一篇关于AI伦理的文章”。智能体行为:搜索资料、整理信息、撰写草稿、校对优化,全程无需用户干预。制造业场景(ManuS):
- 洛谷 P2947:[USACO09MAR] Look Up S ← 数组模拟+单调栈
hnjzsyjyj
信息学竞赛#栈与递归#STL标准库单调栈STLstack
【题目来源】https://www.luogu.com.cn/problem/P2947【题目描述】约翰的N(1≤N≤10^5)头奶牛站成一排,奶牛i的身高是Hi(1≤Hi≤10^6)。现在,每只奶牛都在向右看齐。对于奶牛i,如果奶牛j满足iusingnamespacestd;constintmaxn=1e6+5;inth[maxn],c[maxn];intstk[maxn];intn,top;i
- [论文阅读]Distilling Step-by-Step! Outperforming Larger Language Models with Less Training Data and Smal
0x211
论文阅读语言模型人工智能自然语言处理
中文译名:逐步蒸馏!以较少的训练数据和较小的模型规模超越较大的语言模型发布链接:http://arxiv.org/abs/2305.02301AcceptedtoFindingsofACL2023阅读原因:近期任务需要用到蒸馏操作,了解相关知识核心思想:改变视角。原来的视角:把LLMs视为噪声标签的来源。现在的视角:把LLMs视为能够推理的代理。方法好在哪?需要的数据量少,得到的结果好。文章的方法
- 自动化测试 | UI Automator 进阶指南
aihuanshang9340
UIAutomator相关介绍:跨应用的用户界面自动化测试包含在AndroidXTest(https://developer.android.com/training/testing)中支持的Android系统:>=Android4.3(APIlevel18)基于instrumentation,依赖于AndroidJUnitRunner测试运行器设置UIAutomator(SetupUIAutom
- huggingface 笔记: Trainer
UQI-LIUWJ
笔记人工智能
Trainer是一个为Transformers中PyTorch模型设计的完整训练与评估循环只需将模型、预处理器、数据集和训练参数传入Trainer,其余交给它处理,即可快速开始训练自动处理以下训练流程:根据batch计算loss使用backward()计算梯度根据梯度更新权重重复上述流程直到达到指定的epoch数1配置TrainingArguments使用TrainingArguments定义训练
- 论文略读: ALPAGASUS: TRAINING A BETTER ALPACA WITH FEWER DATA
ICLR20241背景大模型通常需要在有监督指令数据集上进行指令微调来加强指令遵循能力但是广泛使用的数据集包含许多具有不正确或不相关响应的低质量样本,这对大模型微调具有误导性——>论文提出了一种简单有效的数据选择策略,使用ChatGPT自动识别和过滤掉低质量数据同时引入了:ALPAGASUS,它是仅对从52k训练数据中过滤出来的9k高质量数据进行微调。在多个测试集和受控人类评估上显着优于GPT-4
- 语言大模型综述
Paper:ASurveyofLargelanguageModels目录Paper:ASurveyofLargelanguageModels综述概要LLM关键技术规模定律(ScalingLaws)预训练与微调对齐调优(AlignmentTuning)外部工具集成GPT系列模型的技术演进模型检查点和APIPre-Training数据准备和处理数据准备数据预处理数据调度架构EmergentArchit
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end