hdu 5427 简单的排序。取后四位作为年份,按照年份由大到小排序,输出时注意不要把中间的空格输出就ok。
#include <iostream> #include <string> #include <cstring> #include <algorithm> using namespace std; struct node { string age; int year; }N[200]; bool comp(node a,node b) { return a.year>b.year; } int main() { int T,n; string s; cin>>T; while(T--) { cin>>n; getchar(); for(int j=0;j<n;j++) { getline(cin,s); int cur=0,k=1000; for(int i=s.length()-4;i<s.length();i++) { cur+=(s[i]-'0')*k; k/=10; } N[j].age=s.substr(0,s.length()-5); N[j].year=cur; } sort(N,N+n,comp); for(int i=0;i<n;i++) cout<<N[i].age<<endl; } return 0; }hdu 5428:
质因数分解,然后取所有中的最小的两个的乘积,注意结果可能会爆int,要使用long long。
一个数一定会有质因数(除了1),一个数可以分解成多个质因数的乘积,例如12=2*2*3,。
求n的质因数的方法:
法一。因为质因数顾名思义,即是质数也是因数,那么我们可以从2-sqrt(n)+1,求出其中的质数,然后以此判断能否被n整除。也可以从2-(sqrt(n)+1,循环判断i能否被n整除,在判断是否是质数。第一种方法比第二种快。
最简单的方法是下面这种,求x的质因数,保存在数组a中。原理是,质因数中肯定从2开始,先求出最小的质因数first,然后在另一个质因数,n/=first,就相当于再求这个数的最小质因数,从first开始,一直都是这个循环过程。
cin>>x; for(int j=2;j<=sqrt(x);j++){ while(x%j==0){ a[num++]=j; x/=j; } } if(x>1)a[num++]=x;下面是这道题的代码:
#include <cstdio> #include <iostream> #include <string> #include <cstring> #include <algorithm> #include <cmath> using namespace std; int vis[1000008]; int num[200]; int tot; void fget(int m) { for(int i=2;i*i<=m;i++) { while(m%i==0) { vis[++tot]=i; m=m/i; } } if(m>1) vis[++tot]=m; } int main() { int T,n; cin>>T; while(T--) { scanf("%d",&n); // memset(vis,0,sizeof(vis)); tot=0; for(int i=0;i<n;i++) { scanf("%d",&num[i]); fget(num[i]); } if(tot<2) { cout<<-1<<endl; continue; } sort(vis+1,vis+tot+1); printf("%I64d\n",(long long)vis[2]*vis[1]); } return 0; }hdu 5429:
等比数列判定+大数,注意输入全是整数。
这时,我们不能忘记等比数列的一个等价式,即s[i-1]*s[i+1]==s[i]*[i]
当然,一些边界值需要另外判断,例如项数n<3的,和数列中存在0的
比如说数列 0 0 0 0 是等比数列,它的公比可以是除0以外的任何实数
但是 1 0 0 0 又不是等比数列,因为公比不可以为0
因此,在判断存在0的数列时,只需判断是不是数列中所有的元素都为0即可
先来java版本。
/* * Problem: HDU No.5429 * Running time: 380MS * Complier: JAVA * Author: javaherongwei * Create Time: 17:05 2015/9/6 星期日 */ import java.util.*; import java.io.*; import java.math.*; public class Main { public static void main(String args[]) { Scanner cin=new Scanner(new BufferedInputStream(System.in)); int t=cin.nextInt(); BigInteger fac[]= new BigInteger[105]; BigInteger f1,f2; while(t-->0) { int n=cin.nextInt(); int sum=0; for(int i=0; i<n; ++i) { fac[i]=cin.nextBigInteger(); if(fac[i].compareTo(BigInteger.ZERO)==0) sum++; } if(sum!=0) { if(sum==n) System.out.println("Yes"); else System.out.println("No"); continue; } int ok=0; for(int i=1; i<n-1; ++i) { if(fac[i-1].multiply(fac[i+1]).compareTo(fac[i].multiply(fac[i]))!=0) { ok=1; break; } } if(ok==1) System.out.println("No"); else System.out.println("Yes"); } } }接下来是好用的C++大数版
#include <iostream> #include <cstring> using namespace std; #define DIGIT 4 //四位隔开,即万进制 #define DEPTH 10000 //万进制 #define MAX 251 //题目最大位数/4,要不大直接设为最大位数也行 typedef int bignum_t[MAX+1]; /************************************************************************/ /* 读取操作数,对操作数进行处理存储在数组里 */ /************************************************************************/ int read(bignum_t a,istream&is=cin) { char buf[MAX*DIGIT+1],ch ; int i,j ; memset((void*)a,0,sizeof(bignum_t)); if(!(is>>buf))return 0 ; for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ; for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for(i=1;i<=a[0];i++) for(a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ; for(;!a[a[0]]&&a[0]>1;a[0]--); return 1 ; } void write(const bignum_t a,ostream&os=cout) { int i,j ; for(os<<a[i=a[0]],i--;i;i--) for(j=DEPTH/10;j;j/=10) os<<a[i]/j%10 ; } int comp(const bignum_t a,const bignum_t b) { int i ; if(a[0]!=b[0]) return a[0]-b[0]; for(i=a[0];i;i--) if(a[i]!=b[i]) return a[i]-b[i]; return 0 ; } int comp(const bignum_t a,const int b) { int c[12]= { 1 } ; for(c[1]=b;c[c[0]]>=DEPTH;c[c[0]+1]=c[c[0]]/DEPTH,c[c[0]]%=DEPTH,c[0]++); return comp(a,c); } int comp(const bignum_t a,const int c,const int d,const bignum_t b) { int i,t=0,O=-DEPTH*2 ; if(b[0]-a[0]<d&&c) return 1 ; for(i=b[0];i>d;i--) { t=t*DEPTH+a[i-d]*c-b[i]; if(t>0)return 1 ; if(t<O)return 0 ; } for(i=d;i;i--) { t=t*DEPTH-b[i]; if(t>0)return 1 ; if(t<O)return 0 ; } return t>0 ; } /************************************************************************/ /* 大数与大数相加 */ /************************************************************************/ void add(bignum_t a,const bignum_t b) { int i ; for(i=1;i<=b[0];i++) if((a[i]+=b[i])>=DEPTH) a[i]-=DEPTH,a[i+1]++; if(b[0]>=a[0]) a[0]=b[0]; else for(;a[i]>=DEPTH&&i<a[0];a[i]-=DEPTH,i++,a[i]++); a[0]+=(a[a[0]+1]>0); } /************************************************************************/ /* 大数与小数相加 */ /************************************************************************/ void add(bignum_t a,const int b) { int i=1 ; for(a[1]+=b;a[i]>=DEPTH&&i<a[0];a[i+1]+=a[i]/DEPTH,a[i]%=DEPTH,i++); for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++); } /************************************************************************/ /* 大数相减(被减数>=减数) */ /************************************************************************/ void sub(bignum_t a,const bignum_t b) { int i ; for(i=1;i<=b[0];i++) if((a[i]-=b[i])<0) a[i+1]--,a[i]+=DEPTH ; for(;a[i]<0;a[i]+=DEPTH,i++,a[i]--); for(;!a[a[0]]&&a[0]>1;a[0]--); } /************************************************************************/ /* 大数减去小数(被减数>=减数) */ /************************************************************************/ void sub(bignum_t a,const int b) { int i=1 ; for(a[1]-=b;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for(;!a[a[0]]&&a[0]>1;a[0]--); } void sub(bignum_t a,const bignum_t b,const int c,const int d) { int i,O=b[0]+d ; for(i=1+d;i<=O;i++) if((a[i]-=b[i-d]*c)<0) a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH ; for(;a[i]<0;a[i+1]+=(a[i]-DEPTH+1)/DEPTH,a[i]-=(a[i]-DEPTH+1)/DEPTH*DEPTH,i++); for(;!a[a[0]]&&a[0]>1;a[0]--); } /************************************************************************/ /* 大数相乘,读入被乘数a,乘数b,结果保存在c[] */ /************************************************************************/ void mul(bignum_t c,const bignum_t a,const bignum_t b) { int i,j ; memset((void*)c,0,sizeof(bignum_t)); for(c[0]=a[0]+b[0]-1,i=1;i<=a[0];i++) for(j=1;j<=b[0];j++) if((c[i+j-1]+=a[i]*b[j])>=DEPTH) c[i+j]+=c[i+j-1]/DEPTH,c[i+j-1]%=DEPTH ; for(c[0]+=(c[c[0]+1]>0);!c[c[0]]&&c[0]>1;c[0]--); } /************************************************************************/ /* 大数乘以小数,读入被乘数a,乘数b,结果保存在被乘数 */ /************************************************************************/ void mul(bignum_t a,const int b) { int i ; for(a[1]*=b,i=2;i<=a[0];i++) { a[i]*=b ; if(a[i-1]>=DEPTH) a[i]+=a[i-1]/DEPTH,a[i-1]%=DEPTH ; } for(;a[a[0]]>=DEPTH;a[a[0]+1]=a[a[0]]/DEPTH,a[a[0]]%=DEPTH,a[0]++); for(;!a[a[0]]&&a[0]>1;a[0]--); } void mul(bignum_t b,const bignum_t a,const int c,const int d) { int i ; memset((void*)b,0,sizeof(bignum_t)); for(b[0]=a[0]+d,i=d+1;i<=b[0];i++) if((b[i]+=a[i-d]*c)>=DEPTH) b[i+1]+=b[i]/DEPTH,b[i]%=DEPTH ; for(;b[b[0]+1];b[0]++,b[b[0]+1]=b[b[0]]/DEPTH,b[b[0]]%=DEPTH); for(;!b[b[0]]&&b[0]>1;b[0]--); } /**************************************************************************/ /* 大数相除,读入被除数a,除数b,结果保存在c[]数组 */ /* 需要comp()函数 */ /**************************************************************************/ void div(bignum_t c,bignum_t a,const bignum_t b) { int h,l,m,i ; memset((void*)c,0,sizeof(bignum_t)); c[0]=(b[0]<a[0]+1)?(a[0]-b[0]+2):1 ; for(i=c[0];i;sub(a,b,c[i]=m,i-1),i--) for(h=DEPTH-1,l=0,m=(h+l+1)>>1;h>l;m=(h+l+1)>>1) if(comp(b,m,i-1,a))h=m-1 ; else l=m ; for(;!c[c[0]]&&c[0]>1;c[0]--); c[0]=c[0]>1?c[0]:1 ; } void div(bignum_t a,const int b,int&c) { int i ; for(c=0,i=a[0];i;c=c*DEPTH+a[i],a[i]=c/b,c%=b,i--); for(;!a[a[0]]&&a[0]>1;a[0]--); } /************************************************************************/ /* 大数平方根,读入大数a,结果保存在b[]数组里 */ /* 需要comp()函数 */ /************************************************************************/ void sqrt(bignum_t b,bignum_t a) { int h,l,m,i ; memset((void*)b,0,sizeof(bignum_t)); for(i=b[0]=(a[0]+1)>>1;i;sub(a,b,m,i-1),b[i]+=m,i--) for(h=DEPTH-1,l=0,b[i]=m=(h+l+1)>>1;h>l;b[i]=m=(h+l+1)>>1) if(comp(b,m,i-1,a))h=m-1 ; else l=m ; for(;!b[b[0]]&&b[0]>1;b[0]--); for(i=1;i<=b[0];b[i++]>>=1); } /************************************************************************/ /* 返回大数的长度 */ /************************************************************************/ int length(const bignum_t a) { int t,ret ; for(ret=(a[0]-1)*DIGIT,t=a[a[0]];t;t/=10,ret++); return ret>0?ret:1 ; } /************************************************************************/ /* 返回指定位置的数字,从低位开始数到第b位,返回b位上的数 */ /************************************************************************/ int digit(const bignum_t a,const int b) { int i,ret ; for(ret=a[(b-1)/DIGIT+1],i=(b-1)%DIGIT;i;ret/=10,i--); return ret%10 ; } /************************************************************************/ /* 返回大数末尾0的个数 */ /************************************************************************/ int zeronum(const bignum_t a) { int ret,t ; for(ret=0;!a[ret+1];ret++); for(t=a[ret+1],ret*=DIGIT;!(t%10);t/=10,ret++); return ret ; } void comp(int*a,const int l,const int h,const int d) { int i,j,t ; for(i=l;i<=h;i++) for(t=i,j=2;t>1;j++) while(!(t%j)) a[j]+=d,t/=j ; } void convert(int*a,const int h,bignum_t b) { int i,j,t=1 ; memset(b,0,sizeof(bignum_t)); for(b[0]=b[1]=1,i=2;i<=h;i++) if(a[i]) for(j=a[i];j;t*=i,j--) if(t*i>DEPTH) mul(b,t),t=1 ; mul(b,t); } /************************************************************************/ /* 组合数 */ /************************************************************************/ void combination(bignum_t a,int m,int n) { int*t=new int[m+1]; memset((void*)t,0,sizeof(int)*(m+1)); comp(t,n+1,m,1); comp(t,2,m-n,-1); convert(t,m,a); delete[]t ; } /************************************************************************/ /* 排列数 */ /************************************************************************/ void permutation(bignum_t a,int m,int n) { int i,t=1 ; memset(a,0,sizeof(bignum_t)); a[0]=a[1]=1 ; for(i=m-n+1;i<=m;t*=i++) if(t*i>DEPTH) mul(a,t),t=1 ; mul(a,t); } #define SGN(x) ((x)>0?1:((x)<0?-1:0)) #define ABS(x) ((x)>0?(x):-(x)) int read(bignum_t a,int&sgn,istream&is=cin) { char str[MAX*DIGIT+2],ch,*buf ; int i,j ; memset((void*)a,0,sizeof(bignum_t)); if(!(is>>str))return 0 ; buf=str,sgn=1 ; if(*buf=='-')sgn=-1,buf++; for(a[0]=strlen(buf),i=a[0]/2-1;i>=0;i--) ch=buf[i],buf[i]=buf[a[0]-1-i],buf[a[0]-1-i]=ch ; for(a[0]=(a[0]+DIGIT-1)/DIGIT,j=strlen(buf);j<a[0]*DIGIT;buf[j++]='0'); for(i=1;i<=a[0];i++) for(a[i]=0,j=0;j<DIGIT;j++) a[i]=a[i]*10+buf[i*DIGIT-1-j]-'0' ; for(;!a[a[0]]&&a[0]>1;a[0]--); if(a[0]==1&&!a[1])sgn=0 ; return 1 ; } struct bignum { bignum_t num ; int sgn ; public : inline bignum() { memset(num,0,sizeof(bignum_t)); num[0]=1 ; sgn=0 ; } inline int operator!() { return num[0]==1&&!num[1]; } inline bignum&operator=(const bignum&a) { memcpy(num,a.num,sizeof(bignum_t)); sgn=a.sgn ; return*this ; } inline bignum&operator=(const int a) { memset(num,0,sizeof(bignum_t)); num[0]=1 ; sgn=SGN (a); add(num,sgn*a); return*this ; } ; inline bignum&operator+=(const bignum&a) { if(sgn==a.sgn)add(num,a.num); else if (sgn&&a.sgn) { int ret=comp(num,a.num); if(ret>0)sub(num,a.num); else if(ret<0) { bignum_t t ; memcpy(t,num,sizeof(bignum_t)); memcpy(num,a.num,sizeof(bignum_t)); sub (num,t); sgn=a.sgn ; } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ; } else if(!sgn) memcpy(num,a.num,sizeof(bignum_t)),sgn=a.sgn ; return*this ; } inline bignum&operator+=(const int a) { if(sgn*a>0)add(num,ABS(a)); else if(sgn&&a) { int ret=comp(num,ABS(a)); if(ret>0)sub(num,ABS(a)); else if(ret<0) { bignum_t t ; memcpy(t,num,sizeof(bignum_t)); memset(num,0,sizeof(bignum_t)); num[0]=1 ; add(num,ABS (a)); sgn=-sgn ; sub(num,t); } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ; } else if (!sgn)sgn=SGN(a),add(num,ABS(a)); return*this ; } inline bignum operator+(const bignum&a) { bignum ret ; memcpy(ret.num,num,sizeof (bignum_t)); ret.sgn=sgn ; ret+=a ; return ret ; } inline bignum operator+(const int a) { bignum ret ; memcpy(ret.num,num,sizeof (bignum_t)); ret.sgn=sgn ; ret+=a ; return ret ; } inline bignum&operator-=(const bignum&a) { if(sgn*a.sgn<0)add(num,a.num); else if (sgn&&a.sgn) { int ret=comp(num,a.num); if(ret>0)sub(num,a.num); else if(ret<0) { bignum_t t ; memcpy(t,num,sizeof(bignum_t)); memcpy(num,a.num,sizeof(bignum_t)); sub(num,t); sgn=-sgn ; } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ; } else if(!sgn)add (num,a.num),sgn=-a.sgn ; return*this ; } inline bignum&operator-=(const int a) { if(sgn*a<0)add(num,ABS(a)); else if(sgn&&a) { int ret=comp(num,ABS(a)); if(ret>0)sub(num,ABS(a)); else if(ret<0) { bignum_t t ; memcpy(t,num,sizeof(bignum_t)); memset(num,0,sizeof(bignum_t)); num[0]=1 ; add(num,ABS(a)); sub(num,t); sgn=-sgn ; } else memset(num,0,sizeof(bignum_t)),num[0]=1,sgn=0 ; } else if (!sgn)sgn=-SGN(a),add(num,ABS(a)); return*this ; } inline bignum operator-(const bignum&a) { bignum ret ; memcpy(ret.num,num,sizeof(bignum_t)); ret.sgn=sgn ; ret-=a ; return ret ; } inline bignum operator-(const int a) { bignum ret ; memcpy(ret.num,num,sizeof(bignum_t)); ret.sgn=sgn ; ret-=a ; return ret ; } inline bignum&operator*=(const bignum&a) { bignum_t t ; mul(t,num,a.num); memcpy(num,t,sizeof(bignum_t)); sgn*=a.sgn ; return*this ; } inline bignum&operator*=(const int a) { mul(num,ABS(a)); sgn*=SGN(a); return*this ; } inline bignum operator*(const bignum&a) { bignum ret ; mul(ret.num,num,a.num); ret.sgn=sgn*a.sgn ; return ret ; } inline bignum operator*(const int a) { bignum ret ; memcpy(ret.num,num,sizeof (bignum_t)); mul(ret.num,ABS(a)); ret.sgn=sgn*SGN(a); return ret ; } inline bignum&operator/=(const bignum&a) { bignum_t t ; div(t,num,a.num); memcpy (num,t,sizeof(bignum_t)); sgn=(num[0]==1&&!num[1])?0:sgn*a.sgn ; return*this ; } inline bignum&operator/=(const int a) { int t ; div(num,ABS(a),t); sgn=(num[0]==1&&!num [1])?0:sgn*SGN(a); return*this ; } inline bignum operator/(const bignum&a) { bignum ret ; bignum_t t ; memcpy(t,num,sizeof(bignum_t)); div(ret.num,t,a.num); ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*a.sgn ; return ret ; } inline bignum operator/(const int a) { bignum ret ; int t ; memcpy(ret.num,num,sizeof(bignum_t)); div(ret.num,ABS(a),t); ret.sgn=(ret.num[0]==1&&!ret.num[1])?0:sgn*SGN(a); return ret ; } inline bignum&operator%=(const bignum&a) { bignum_t t ; div(t,num,a.num); if(num[0]==1&&!num[1])sgn=0 ; return*this ; } inline int operator%=(const int a) { int t ; div(num,ABS(a),t); memset(num,0,sizeof (bignum_t)); num[0]=1 ; add(num,t); return t ; } inline bignum operator%(const bignum&a) { bignum ret ; bignum_t t ; memcpy(ret.num,num,sizeof(bignum_t)); div(t,ret.num,a.num); ret.sgn=(ret.num[0]==1&&!ret.num [1])?0:sgn ; return ret ; } inline int operator%(const int a) { bignum ret ; int t ; memcpy(ret.num,num,sizeof(bignum_t)); div(ret.num,ABS(a),t); memset(ret.num,0,sizeof(bignum_t)); ret.num[0]=1 ; add(ret.num,t); return t ; } inline bignum&operator++() { *this+=1 ; return*this ; } inline bignum&operator--() { *this-=1 ; return*this ; } ; inline int operator>(const bignum&a) { return sgn>0?(a.sgn>0?comp(num,a.num)>0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<0:0):a.sgn<0); } inline int operator>(const int a) { return sgn>0?(a>0?comp(num,a)>0:1):(sgn<0?(a<0?comp(num,-a)<0:0):a<0); } inline int operator>=(const bignum&a) { return sgn>0?(a.sgn>0?comp(num,a.num)>=0:1):(sgn<0?(a.sgn<0?comp(num,a.num)<=0:0):a.sgn<=0); } inline int operator>=(const int a) { return sgn>0?(a>0?comp(num,a)>=0:1):(sgn<0?(a<0?comp(num,-a)<=0:0):a<=0); } inline int operator<(const bignum&a) { return sgn<0?(a.sgn<0?comp(num,a.num)>0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<0:0):a.sgn>0); } inline int operator<(const int a) { return sgn<0?(a<0?comp(num,-a)>0:1):(sgn>0?(a>0?comp(num,a)<0:0):a>0); } inline int operator<=(const bignum&a) { return sgn<0?(a.sgn<0?comp(num,a.num)>=0:1):(sgn>0?(a.sgn>0?comp(num,a.num)<=0:0):a.sgn>=0); } inline int operator<=(const int a) { return sgn<0?(a<0?comp(num,-a)>=0:1): (sgn>0?(a>0?comp(num,a)<=0:0):a>=0); } inline int operator==(const bignum&a) { return(sgn==a.sgn)?!comp(num,a.num):0 ; } inline int operator==(const int a) { return(sgn*a>=0)?!comp(num,ABS(a)):0 ; } inline int operator!=(const bignum&a) { return(sgn==a.sgn)?comp(num,a.num):1 ; } inline int operator!=(const int a) { return(sgn*a>=0)?comp(num,ABS(a)):1 ; } inline int operator[](const int a) { return digit(num,a); } friend inline istream&operator>>(istream&is,bignum&a) { read(a.num,a.sgn,is); return is ; } friend inline ostream&operator<<(ostream&os,const bignum&a) { if(a.sgn<0) os<<'-' ; write(a.num,os); return os ; } friend inline bignum sqrt(const bignum&a) { bignum ret ; bignum_t t ; memcpy(t,a.num,sizeof(bignum_t)); sqrt(ret.num,t); ret.sgn=ret.num[0]!=1||ret.num[1]; return ret ; } friend inline bignum sqrt(const bignum&a,bignum&b) { bignum ret ; memcpy(b.num,a.num,sizeof(bignum_t)); sqrt(ret.num,b.num); ret.sgn=ret.num[0]!=1||ret.num[1]; b.sgn=b.num[0]!=1||ret.num[1]; return ret ; } inline int length() { return :: length(num); } inline int zeronum() { return :: zeronum(num); } inline bignum C(const int m,const int n) { combination(num,m,n); sgn=1 ; return*this ; } inline bignum P(const int m,const int n) { permutation(num,m,n); sgn=1 ; return*this ; } }; bignum a[105],zero; int main() { int i,t,n; zero=0; cin>>t; while(t--) { cin>>n; int cnt=0; for(i=0;i<n;++i) { cin>>a[i]; if(a[i]==zero) ++cnt; } if(cnt&&cnt!=n) cout<<"No"<<endl; else{ for(i=1;i<n-1;++i) if(a[i]*a[i]!=a[i-1]*a[i+1]) break; if(i<n-1) cout<<"No"<<endl; else cout<<"Yes"<<endl; } } return 0 ; }hdu 5430:
既约分数,即分子分母互质的分数,如果不是既约分数的话相当于同一种反射方案循环多次。源自:UVa12493
#include<cstdio> #include<iostream> #include<cstring> #include<algorithm> using namespace std; int gcd(int a,int b) { return b==0?a:gcd(b,a%b); } int main() { int t,n; scanf("%d",&t); while(t--) { scanf("%d",&n); int ans=0; for(int i=1; i<=n; i++) if(gcd(i,n+1)==1) ans++; printf("%d\n",ans); } return 0; }