opencv 人脸识别 (二)训练和识别

上一篇中我们对训练数据做了一些预处理,检测出人脸并保存在\pic\color\x文件夹下(x=1,2,3,...类别号),本文做训练和识别。为了识别,首先将人脸训练数据 转为灰度、对齐、归一化,再放入分类器(EigenFaceRecognizer),最后用训练出的model进行predict。


-----------------------------------------


环境:vs2010+opencv 2.4.6.0

特征:eigenface

Input:一个人脸数据库,15个人,每人20个样本(左右)。

Output:人脸检测,并识别出每张检测到的人脸。


-----------------------------------------


1. 为训练数据预处理( 转为灰度、对齐、归一化 

  • 转为灰度和对齐是后面做训练时EigenFaceRecognizer的要求;
  • 归一化是防止光照带来的影响

在上一篇的 2.2 Prehelper.cpp文件中加入函数

void resizeandtogray(char* dir,int k, vector<Mat> &images, vector<int> &labels,
vector<Mat> &testimages, vector<int> &testlabels);


void resizeandtogray(char* dir,int K, vector<Mat> &images, vector<int> &labels,
	vector<Mat> &testimages, vector<int> &testlabels)
{
	IplImage* standard = cvLoadImage("D:\\privacy\\picture\\photo\\2.jpg",CV_LOAD_IMAGE_GRAYSCALE);
	string cur_dir;
	char id[5];
	int i,j;
	for(int i=1; i<=K; i++)
	{
		cur_dir = dir;
		cur_dir.append("gray\\");	
		_itoa(i,id,10);
		cur_dir.append(id);
		const char* dd = cur_dir.c_str();
		CStatDir statdir;
		if (!statdir.SetInitDir(dd))
		{
			puts("Dir not exist");
			return;
		}
		cout<<"Processing samples in Class "<<i<<endl;
		vector<char*>file_vec = statdir.BeginBrowseFilenames("*.*");
		for (j=0;j<file_vec.size();j++)
		{
			IplImage* cur_img = cvLoadImage(file_vec[j],CV_LOAD_IMAGE_GRAYSCALE);
			cvResize(cur_img,standard,CV_INTER_AREA);
			Mat cur_mat = cvarrToMat(standard,true),des_mat;
			cv::normalize(cur_mat,des_mat,0, 255, NORM_MINMAX, CV_8UC1);
			cvSaveImage(file_vec[j],cvCloneImage(&(IplImage) des_mat));
			if(j!=file_vec.size())
			{
					images.push_back(des_mat);
					labels.push_back(i);
			}
			else
			{
				testimages.push_back(des_mat);
				testlabels.push_back(i);
			}
		}
		cout<<file_vec.size()<<" images."<<endl;
	}
}



并在main中调用:

int main( )
{
	CvCapture* capture = 0;
	Mat frame, frameCopy, image;
	string inputName;	
	int mode;

	char dir[256] = "D:\\Courses\\CV\\Face_recognition\\pic\\"; 
	//preprocess_trainingdata(dir,K); //face_detection and extract to file
	vector<Mat> images,testimages;
	vector<int> labels,testlabels;
	resizeandtogray(dir,K,images,labels,testimages,testlabels); //togray, normalize and resize
	
	system("pause");
	return 0;
}




2. 训练

有了vector<Mat> images,testimages; vector<int> labels,testlabels; 可以开始训练了,我们采用EigenFaceRecognizer建模。

在Prehelper.cpp中加入函数

Ptr<FaceRecognizer> Recognition(vector<Mat> images, vector<int> labels,vector<Mat> testimages, vector<int> testlabels);


Ptr<FaceRecognizer> Recognition(vector<Mat> images, vector<int> labels,
	vector<Mat> testimages, vector<int> testlabels)
{
	Ptr<FaceRecognizer> model = createEigenFaceRecognizer(10);//10 Principal components
	cout<<"train"<<endl;
	model->train(images,labels);
	int i,acc=0,predict_l;
	for (i=0;i<testimages.size();i++)
	{
		predict_l = model->predict(testimages[i]);
		if(predict_l != testlabels[i])
		{
			cout<<"An error in recognition: sample "<<i+1<<", predict "<<
				predict_l<<", groundtruth "<<testlabels[i]<<endl;
			imshow("error 1",testimages[i]);
			waitKey();
		}
		else
			acc++;
	}
	cout<<"Recognition Rate: "<<acc*1.0/testimages.size()<<endl;
	return model;
}



Recognization()输出分错的样本和正确率,最后返回建模结果Ptr<FaceRecognizer> model


主函数改为:

int main( )
{
	CvCapture* capture = 0;
	Mat frame, frameCopy, image;
	string inputName;	
	int mode;

	char dir[256] = "D:\\Courses\\CV\\Face_recognition\\pic\\"; 
	//preprocess_trainingdata(dir,K); //face_detection and extract to file
	vector<Mat> images,testimages;
	vector<int> labels,testlabels;
	//togray, normalize and resize; load to images,labels,testimages,testlabels
	resizeandtogray(dir,K,images,labels,testimages,testlabels); 
	//recognition
	Ptr<FaceRecognizer> model = Recognition(images,labels,testimages,testlabels);
	char* dirmodel = new char [256];
	strcpy(dirmodel,dir); strcat(dirmodel,"model.out");
	FILE* f = fopen(dirmodel,"w");
	fwrite(model,sizeof(model),1,f);
	system("pause");
	return 0;
}



最终结果:一个错分样本,正确率93.3%


opencv 人脸识别 (二)训练和识别_第1张图片



文章所用代码打包链接:http://download.csdn.net/detail/abcjennifer/7047853



关于Computer Vision更多的学习资料将继续更新,敬请关注本博客和新浪微博Rachel Zhang




你可能感兴趣的:(opencv,人脸检测,对齐,人脸识别,归一化)