- 2018年中南大学中英翻译
某翁
参考:20180827235856533.jpg【1】机器学习理论表明,机器学习算法能从有限个训练集样本上得到较好的泛化【1】Machinelearningtheoryshowsthatmachinelearningalgorithmcangeneralizewellfromfinitetrainingsetsampleslimited有限的infinite无限的【2】这似乎违背了一些基本的逻辑准
- MySQL新增字段DDL:锁表全解析、避坑指南与实战案例
核心思考问题:新增字段一定会锁表吗?答案:不一定!这主要取决于:MySQL版本:这是最关键的因素。ALGORITHM选项:显式或隐式指定的算法。新增字段的属性:是否允许NULL?是否有默认值?默认值类型?字段位置?表的大小和存储引擎:InnoDB的行为与MyISAM不同(本文主要讨论InnoDB)。并发负载:操作期间对表的读写压力。一、真实案例场景:血泪教训场景1:电商大促前夜,核心订单表加字段(
- Qt 5.15.x + VS的源码编译
黃建榮
QtAboutqtc++
环境依赖MVSC,Python,Ruby,Perl需要安装的一些工具第一次编译configure的相关命令configure.bat-prefixE:\qt\qt5\install\-opensource-confirm-license\-qt-sqlite-qt-pcre-qt-zlib\-qt-libpng-qt-libjpeg-qt-freetype-qt-harfbuzz\-skipqtw
- 用 automake 来构建项目
守拙圆
author:守拙圆一般而言,对于小项目通常自己来编写Makefile即可。但对于大型项目,手动编写维护大型项目,编写makefile将是一项费力费时的工作。1工具介绍gnu提供了一套autotools工具来辅助用户来生成makefile,完成编译工作。此工具集包括:autoscan:此命令能够对于一个软件包或目录创建或者维护一个configure.ac文件。aclocal:此命令将configu
- ubuntu之坑(十四)——安装FFmpeg进行本地视频推流(在海思平台上运行)
光电的一只菜鸡
linux虚拟机ubuntuffmpeg音视频
1.编译x264(没有x264依赖项参考,有则跳过) 参考blog:ubuntu22.04下编译ffmpeg-6.0,并且激活x264编码功能。记录一下踩坑(ERROR:x264notfoundusingpkg-config)需要注意:sudo./configure--enable-static--prefix=/usr/local/x264 在执行上面命令时可能遇到下面问题,这是在Linux
- 老码农和你一起学AI:Python系列-Matplotlib 核心架构
chilavert318
熬之滴水穿石matplotlibpython
在数据可视化领域,Matplotlib就像一位全能的画家——它能画出折线图、柱状图等基础图表,也能创作热力图、3D图等复杂作品。但要真正用好这位“画家”,首先得理解它的“创作工具”:Figure与Axes对象的关系、绘图的基本流程、图表保存的关键参数,以及如何统一调整图表风格。这些基础架构知识,是从“能画图”到“画好图”的关键。一、Figure与Axes如果把Matplotlib的绘图过程比作在画
- 机器学习朴素贝叶斯算法——python详细代码解析(sklearn)
python机器学习ML
机器学习python算法sklearn朴素贝叶斯
朴素贝叶斯算法(NaiveBayesianalgorithm)是在贝叶斯算法的基础上假设特征变量相互独立的一种分类方法,是贝叶斯算法的简化,常用于文档分类和垃圾邮件过滤。当“特征变量相互独立”的假设条件能够被有效满足时,朴素贝叶斯算法具有算法比较简单、分类效率稳定、所需估计参数少、对缺失数据不敏感等种种优势。而在实务中“特征变量相互独立”的假设条件往往不能得到满足,这在一定程度上降低了贝叶斯分类算
- python柱状图颜色_Python 绘制 柱状图
#创建一个点数为8x6的窗口,并设置分辨率为80像素/每英寸plt.figure(figsize=(10,10),dpi=80)#再创建一个规格为1x1的子图#plt.subplot(1,1,1)#柱子总数N=10#包含每个柱子对应值的序列values=(56796,42996,24872,13849,8609,5331,1971,554,169,26)#包含每个柱子下标的序列index=np.a
- Leetcode 504. Base 7
小白菜又菜
Leetcode解题报告leetcode算法职场和发展
ProblemGivenanintegernum,returnastringofitsbase7representation.AlgorithmDistinguishbetweenpositiveandnegativevalues,thenstoretheremaindersinreverseorderafterdividingby7.CodeclassSolution:defconvertToB
- Connection timed out: connect. If you are behind an HTTP proxy, please configure the proxy settings
FirebaseCrashlytics提示mapping上传超时FirebaseuploadCrashlyticsMappingFileRelease解决方案核心就是禁用掉uploadCrashlyticsMappingFileRelease这个任务最外层build.gradle中添加firebaseCrashlytics{//false为不上传,编译时也不会有对应的任务,//这里可以根据实际需求
- QT中CMake配置QQuick、QML
求未忆
qt开发语言c++vscode
QT中CMake配置QQuick、QML环境配置vscodeQTCMakeDemo环境配置vscode+QT5.8.0-MSVC2013+MSVC2013vscodeCMake插件CPP插件QTConfigure插件QTTools插件QML插件(在vscode中的开发体验不是很好,没有代码补全功能,还是需要在QTCreator中进行qml的开发)QT在自己的电脑上试验过MSVC2017+对应的QT
- python学习DAY12打卡
星仔编程
python学习打卡学习
启发式算法超参数调整专题2三种启发式算法的示例代码:遗传算法、粒子群算法、退火算法学习优化算法的思路(避免浪费无效时间)今天以自由探索的思路为主,尝试检索资料、视频、文档,用尽可能简短但是清晰的语言看是否能说清楚这三种算法每种算法的实现逻辑,帮助更深入的理解。启发式算法(HeuristicAlgorithm)是一种“经验法则”式的求解方法,用近似、快速、可接受的策略,在合理时间内找到问题的“足够好
- 机器学习资源
SimpleUmbrella
以下是根据不同语言类型和应用领域收集的各类工具库,持续更新中。C通用机器学习Recommender-一个产品推荐的C语言库,利用了协同过滤.计算机视觉CCV-C-based/Cached/CoreComputerVisionLibrary,是一个现代化的计算机视觉库。VLFeat-VLFeat是开源的computervisionalgorithms库,有Matlabtoolbox。C++计算机视觉
- 122. Best Time to Buy and Sell Stock II
SilentDawn
ProblemSayyouhaveanarrayforwhichtheithelementisthepriceofagivenstockondayi.Designanalgorithmtofindthemaximumprofit.Youmaycompleteasmanytransactionsasyoulike(i.e.,buyoneandselloneshareofthestockmultipl
- 哈希表在Python中的实现
Kentos(acoustic ver.)
散列表数据结构python哈希算法数据挖掘
什么是Hashing?将任意长度的输入转换为一个很短的索引的过程。为什么用哈希表?可以自定义keys查找速度快,时间复杂度可以只有O(1)Python中的字典就是哈希表哈希表只能用于添加和查找哈希函数HashAlgorithm/HashFunction通过key值计算索引,通常是采用模运算。address=keymodn伪随机性实现均匀分布冲突处理collision:两个key产生了相同的
- matlab a1处语法无效,MATLAB常见错误
桃子胖
matlaba1处语法无效
1.在GUI子程序的OpeningFcn函数的结尾加上uiwait(handles.figure1);figure1是subGUI的Tag;2.subGUI中控制程序结束(如"OK"和"Cancel"按钮)的callback末尾加上uiresume(handles.figure1),不要将delete命令放在这些callback中;3.在子GUI的OutputFcn中设置要传递出去的参数,如var
- 可视化神器Plotly绘制热力图
皮皮大
公众号:尤而小屋作者:Peter编辑:Peter大家好,我是Peter~之前更新了很多关于Plotly绘图的文章。今天带来的文章是基于官网和实际案例来讲解如何绘制不同需求下的热力图。Plotly中绘制热力图有3种方式:heatmap、imshow和figure_factory(Plotly的图形工厂函数)官网学习地址:https://plotly.com/python/heatmaps/https
- 怎么控制latex插图的位置_LaTex强制图片位置
weixin_39815310
怎么控制latex插图的位置
在LaTex中,\begin{figure}[~]是图片环境,常用选择项[htbp]是浮动格式:[h]~here,当前位置。将图形放置在正文文本中给出该图形环境的地方。如果本页所剩页面不够,这一参数将不起作用。[t]~top,顶部。将图形放置在页面的顶部。[b]~bottom,底部。将图形放置在页面的底部。[p]~pageofitsown,浮动页。将图形放置在一个允许有浮动对象的页面上。一般使用[
- 【leetcode】169、Majority Element
潇湘demi
翻译找出多数,出现>n/2次的元素。思路Moorevotingalgorithm--每找出两个不同的element,就成对删除即count--,最终剩下的一定就是所求的(多数的元素>n/2)。时间复杂度:O(n)a=["a","c","b","c","a","a","a"]deffind_majory_number(a):count=0foriinrange(len(a)):ifcount==0:
- 数据结构与算法分析-C++描述 第10章 算法设计技巧(贪心算法之霍夫曼编码)
qq_37172182
C++数据结构与算法分析-C++描述算法设计技巧贪心算法霍夫曼编码
算法设计技巧一:贪心算法(GreedyAlgorithm)在第9章曾多次遇到贪心算法的应用,如解决单源最短路径的Dijkstra算法,最小生成树的Prim算法,最小生成树的Kruskal算法。贪心算法分阶段进行。在每一阶段可以认为所做的决定是最好的,而不考虑将来的结果。一般来说,这意味着选择是某个局部优的。这种“眼下能够拿到的就拿”的策略即是这类算法名称的来源。当算法结束时,我们希望局部最优就是全
- 函数 (lnx)‘=1/x 证明
weixin_43420126
数学基础知识微积分
matlab中绘制lnx与1/x函数图像(deepseek生成)%定义x的范围(x>0)x=linspace(0.00001,5,1000);%从0.00001开始避免无穷大%计算函数值y_log=log(x);%自然对数ln(x)y_inv=1./x;%反比例函数1/x%创建图形窗口figure('Color','white','Position',[100,100,800,600]);%绘制两
- C++高级技术详解
yz123lucky
c++开发语言
C++高级技术详解目录模板(Templates)右值和移动语义(RvalueandMoveSemantics)定位new(Placementnew)强类型(StrongTypes)智能指针(SmartPointers)容器和算法(ContainersandAlgorithms)Lambda表达式常量表达式(constexpr)多线程和并发(MultithreadingandConcurrency)
- suse linux 11 安装教程,IMA 在SUSE Linux 11下的安装及使用
葱油拌面没吃过
suselinux11安装教程
IMA的安装主要的操作是对2.6.30以上版本的内核配置,具体操作如下:一、系统环境一台带有TPM芯片的主机(Lenovo8800)SUSELinux11.2(内核版本:2.6.31.5)Trousers-0.3.6(可选)二、内核配置在/usr/src/linux目录下:1.#makeclean&&makemrproper(若以前编译过内核,则运行这步)2.#cp/boot/configure-
- CloudSimPy 开源项目使用教程
黎连研Shana
CloudSimPy开源项目使用教程1.项目的目录结构及介绍CloudSimPy是一个数据中心作业调度仿真框架,基于离散事件仿真框架SimPy,利用Python语言进行实现。项目的目录结构如下:CloudSimPy/├──core/│├──config/│├──job/│├──machine/│├──cluster/│├──algorithm/│├──scheduler/│├──broker/│├
- PyTorch Lightning(PL)通过约定的生命周期方法自动管理训练流程。
小香猪6688
pytorch人工智能python
一、PyTorchLightning的“隐形流程”PL是一个基于PyTorch的轻量级训练框架,它通过约定优于配置的原则,定义了一系列生命周期钩子方法(如training_step、validation_step、configure_optimizers等)。当你调用trainer.fit(model)时,PL会自动按顺序调用这些方法,形成一个“隐形的主流程”。关键生命周期方法(按调用顺序):初始
- 使用CMake高效管理C语言多文件项目:从混乱到秩序
给老吕螺丝
#lvgl经验分享c语言物联网
在经历多个混乱的C项目后,我通过CMake实现了编译效率提升300%,文件修改后编译时间从45秒缩短到3秒。这份实战指南将带你系统掌握CMake的核心用法。一、为什么选择CMake?当C项目超过3个文件时,手动编译的弊端显现:gcc-cmain.cutils.calgorithm.cgccmain.outils.oalgorithm.o-oapp面临的问题:每次增删文件需修改编译指令无法自动检测头
- .net core session 存储到redis缓存数据库
1.Startup.cs文件ConfigureServices方法加入以下代码#region使用Redis保存SessionvarredisConn=Configuration["WebConfig:Redis:Connection"];varredisInstanceName=Configuration["WebConfig:Redis:InstanceName"];//Session过期时长分
- 数据结构与算法-09贪心算法&动态规划
阿诚学java
数据结构与算法学习记录贪心算法动态规划ios
贪心算法&动态规划1贪心算法介绍贪心算法(GreedyAlgorithm)是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法。贪心算法通常用于解决优化问题,如最小化成本、最大化收益等。然而,贪心算法并不总是能够得到全局最优解,但它具有直观、高效、易于实现等优点,因此在许多实际问题中得到了广泛应用。基本思想贪心算法总是从问题的某一个初始解出发。
- 零基础数据结构与算法——第五章:高级算法-贪心算法-基础&示例
5.2贪心算法(GreedyAlgorithm)5.2.1贪心算法的基本概念什么是贪心算法?贪心算法是一种在每一步选择中都采取当前状态下最好或最优的选择,从而希望导致结果是最好或最优的算法。生活例子:想象你在超市购物,手里有100元钱,想买尽可能多的零食。如果你采用贪心策略,你会怎么做?你可能会先选择最便宜的零食,然后是第二便宜的,以此类推,直到钱用完。这就是一种贪心策略——每次都选择当前看起来最
- Python打卡day6 描述性统计
荣582
python学习打卡python开发语言机器学习
@疏锦行针对其他特征绘制单特征图和特征和标签的关系图,并且试图观察出一些有意思的结论单特征可视化importmatplotlib.pyplotaspltimportseabornassnsimportpandasaspd#读取数据,这里假设数据文件名为data.csv,你需要根据实际情况修改文件名data=pd.read_csv('data.csv')#连续变量可视化示例plt.figure(fi
- tomcat基础与部署发布
暗黑小菠萝
Tomcat java web
从51cto搬家了,以后会更新在这里方便自己查看。
做项目一直用tomcat,都是配置到eclipse中使用,这几天有时间整理一下使用心得,有一些自己配置遇到的细节问题。
Tomcat:一个Servlets和JSP页面的容器,以提供网站服务。
一、Tomcat安装
安装方式:①运行.exe安装包
&n
- 网站架构发展的过程
ayaoxinchao
数据库应用服务器网站架构
1.初始阶段网站架构:应用程序、数据库、文件等资源在同一个服务器上
2.应用服务和数据服务分离:应用服务器、数据库服务器、文件服务器
3.使用缓存改善网站性能:为应用服务器提供本地缓存,但受限于应用服务器的内存容量,可以使用专门的缓存服务器,提供分布式缓存服务器架构
4.使用应用服务器集群改善网站的并发处理能力:使用负载均衡调度服务器,将来自客户端浏览器的访问请求分发到应用服务器集群中的任何
- [信息与安全]数据库的备份问题
comsci
数据库
如果你们建设的信息系统是采用中心-分支的模式,那么这里有一个问题
如果你的数据来自中心数据库,那么中心数据库如果出现故障,你的分支机构的数据如何保证安全呢?
是否应该在这种信息系统结构的基础上进行改造,容许分支机构的信息系统也备份一个中心数据库的文件呢?
&n
- 使用maven tomcat plugin插件debug关联源代码
商人shang
mavendebug查看源码tomcat-plugin
*首先需要配置好'''maven-tomcat7-plugin''',参见[[Maven开发Web项目]]的'''Tomcat'''部分。
*配置好后,在[[Eclipse]]中打开'''Debug Configurations'''界面,在'''Maven Build'''项下新建当前工程的调试。在'''Main'''选项卡中点击'''Browse Workspace...'''选择需要开发的
- 大访问量高并发
oloz
大访问量高并发
大访问量高并发的网站主要压力还是在于数据库的操作上,尽量避免频繁的请求数据库。下面简
要列出几点解决方案:
01、优化你的代码和查询语句,合理使用索引
02、使用缓存技术例如memcache、ecache将不经常变化的数据放入缓存之中
03、采用服务器集群、负载均衡分担大访问量高并发压力
04、数据读写分离
05、合理选用框架,合理架构(推荐分布式架构)。
- cache 服务器
小猪猪08
cache
Cache 即高速缓存.那么cache是怎么样提高系统性能与运行速度呢?是不是在任何情况下用cache都能提高性能?是不是cache用的越多就越好呢?我在近期开发的项目中有所体会,写下来当作总结也希望能跟大家一起探讨探讨,有错误的地方希望大家批评指正。
1.Cache 是怎么样工作的?
Cache 是分配在服务器上
- mysql存储过程
香水浓
mysql
Description:插入大量测试数据
use xmpl;
drop procedure if exists mockup_test_data_sp;
create procedure mockup_test_data_sp(
in number_of_records int
)
begin
declare cnt int;
declare name varch
- CSS的class、id、css文件名的常用命名规则
agevs
JavaScriptUI框架Ajaxcss
CSS的class、id、css文件名的常用命名规则
(一)常用的CSS命名规则
头:header
内容:content/container
尾:footer
导航:nav
侧栏:sidebar
栏目:column
页面外围控制整体布局宽度:wrapper
左右中:left right
- 全局数据源
AILIKES
javatomcatmysqljdbcJNDI
实验目的:为了研究两个项目同时访问一个全局数据源的时候是创建了一个数据源对象,还是创建了两个数据源对象。
1:将diuid和mysql驱动包(druid-1.0.2.jar和mysql-connector-java-5.1.15.jar)copy至%TOMCAT_HOME%/lib下;2:配置数据源,将JNDI在%TOMCAT_HOME%/conf/context.xml中配置好,格式如下:&l
- MYSQL的随机查询的实现方法
baalwolf
mysql
MYSQL的随机抽取实现方法。举个例子,要从tablename表中随机提取一条记录,大家一般的写法就是:SELECT * FROM tablename ORDER BY RAND() LIMIT 1。但是,后来我查了一下MYSQL的官方手册,里面针对RAND()的提示大概意思就是,在ORDER BY从句里面不能使用RAND()函数,因为这样会导致数据列被多次扫描。但是在MYSQL 3.23版本中,
- JAVA的getBytes()方法
bijian1013
javaeclipseunixOS
在Java中,String的getBytes()方法是得到一个操作系统默认的编码格式的字节数组。这个表示在不同OS下,返回的东西不一样!
String.getBytes(String decode)方法会根据指定的decode编码返回某字符串在该编码下的byte数组表示,如:
byte[] b_gbk = "
- AngularJS中操作Cookies
bijian1013
JavaScriptAngularJSCookies
如果你的应用足够大、足够复杂,那么你很快就会遇到这样一咱种情况:你需要在客户端存储一些状态信息,这些状态信息是跨session(会话)的。你可能还记得利用document.cookie接口直接操作纯文本cookie的痛苦经历。
幸运的是,这种方式已经一去不复返了,在所有现代浏览器中几乎
- [Maven学习笔记五]Maven聚合和继承特性
bit1129
maven
Maven聚合
在实际的项目中,一个项目通常会划分为多个模块,为了说明问题,以用户登陆这个小web应用为例。通常一个web应用分为三个模块:
1. 模型和数据持久化层user-core,
2. 业务逻辑层user-service以
3. web展现层user-web,
user-service依赖于user-core
user-web依赖于user-core和use
- 【JVM七】JVM知识点总结
bit1129
jvm
1. JVM运行模式
1.1 JVM运行时分为-server和-client两种模式,在32位机器上只有client模式的JVM。通常,64位的JVM默认都是使用server模式,因为server模式的JVM虽然启动慢点,但是,在运行过程,JVM会尽可能的进行优化
1.2 JVM分为三种字节码解释执行方式:mixed mode, interpret mode以及compiler
- linux下查看nginx、apache、mysql、php的编译参数
ronin47
在linux平台下的应用,最流行的莫过于nginx、apache、mysql、php几个。而这几个常用的应用,在手工编译完以后,在其他一些情况下(如:新增模块),往往想要查看当初都使用了那些参数进行的编译。这时候就可以利用以下方法查看。
1、nginx
[root@361way ~]# /App/nginx/sbin/nginx -V
nginx: nginx version: nginx/
- unity中运用Resources.Load的方法?
brotherlamp
unity视频unity资料unity自学unityunity教程
问:unity中运用Resources.Load的方法?
答:Resources.Load是unity本地动态加载资本所用的方法,也即是你想动态加载的时分才用到它,比方枪弹,特效,某些实时替换的图像什么的,主张此文件夹不要放太多东西,在打包的时分,它会独自把里边的一切东西都会集打包到一同,不论里边有没有你用的东西,所以大多数资本应该是自个建文件放置
1、unity实时替换的物体即是依据环境条件
- 线段树-入门
bylijinnan
java算法线段树
/**
* 线段树入门
* 问题:已知线段[2,5] [4,6] [0,7];求点2,4,7分别出现了多少次
* 以下代码建立的线段树用链表来保存,且树的叶子结点类似[i,i]
*
* 参考链接:http://hi.baidu.com/semluhiigubbqvq/item/be736a33a8864789f4e4ad18
* @author lijinna
- 全选与反选
chicony
全选
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd">
<html>
<head>
<title>全选与反选</title>
- vim一些简单记录
chenchao051
vim
mac在/usr/share/vim/vimrc linux在/etc/vimrc
1、问:后退键不能删除数据,不能往后退怎么办?
答:在vimrc中加入set backspace=2
2、问:如何控制tab键的缩进?
答:在vimrc中加入set tabstop=4 (任何
- Sublime Text 快捷键
daizj
快捷键sublime
[size=large][/size]Sublime Text快捷键:Ctrl+Shift+P:打开命令面板Ctrl+P:搜索项目中的文件Ctrl+G:跳转到第几行Ctrl+W:关闭当前打开文件Ctrl+Shift+W:关闭所有打开文件Ctrl+Shift+V:粘贴并格式化Ctrl+D:选择单词,重复可增加选择下一个相同的单词Ctrl+L:选择行,重复可依次增加选择下一行Ctrl+Shift+L:
- php 引用(&)详解
dcj3sjt126com
PHP
在PHP 中引用的意思是:不同的名字访问同一个变量内容. 与C语言中的指针是有差别的.C语言中的指针里面存储的是变量的内容在内存中存放的地址 变量的引用 PHP 的引用允许你用两个变量来指向同一个内容 复制代码代码如下:
<?
$a="ABC";
$b =&$a;
echo
- SVN中trunk,branches,tags用法详解
dcj3sjt126com
SVN
Subversion有一个很标准的目录结构,是这样的。比如项目是proj,svn地址为svn://proj/,那么标准的svn布局是svn://proj/|+-trunk+-branches+-tags这是一个标准的布局,trunk为主开发目录,branches为分支开发目录,tags为tag存档目录(不允许修改)。但是具体这几个目录应该如何使用,svn并没有明确的规范,更多的还是用户自己的习惯。
- 对软件设计的思考
e200702084
设计模式数据结构算法ssh活动
软件设计的宏观与微观
软件开发是一种高智商的开发活动。一个优秀的软件设计人员不仅要从宏观上把握软件之间的开发,也要从微观上把握软件之间的开发。宏观上,可以应用面向对象设计,采用流行的SSH架构,采用web层,业务逻辑层,持久层分层架构。采用设计模式提供系统的健壮性和可维护性。微观上,对于一个类,甚至方法的调用,从计算机的角度模拟程序的运行情况。了解内存分配,参数传
- 同步、异步、阻塞、非阻塞
geeksun
非阻塞
同步、异步、阻塞、非阻塞这几个概念有时有点混淆,在此文试图解释一下。
同步:发出方法调用后,当没有返回结果,当前线程会一直在等待(阻塞)状态。
场景:打电话,营业厅窗口办业务、B/S架构的http请求-响应模式。
异步:方法调用后不立即返回结果,调用结果通过状态、通知或回调通知方法调用者或接收者。异步方法调用后,当前线程不会阻塞,会继续执行其他任务。
实现:
- Reverse SSH Tunnel 反向打洞實錄
hongtoushizi
ssh
實際的操作步驟:
# 首先,在客戶那理的機器下指令連回我們自己的 Server,並設定自己 Server 上的 12345 port 會對應到幾器上的 SSH port
ssh -NfR 12345:localhost:22
[email protected]
# 然後在 myhost 的機器上連自己的 12345 port,就可以連回在客戶那的機器
ssh localhost -p 1
- Hibernate中的缓存
Josh_Persistence
一级缓存Hiberante缓存查询缓存二级缓存
Hibernate中的缓存
一、Hiberante中常见的三大缓存:一级缓存,二级缓存和查询缓存。
Hibernate中提供了两级Cache,第一级别的缓存是Session级别的缓存,它是属于事务范围的缓存。这一级别的缓存是由hibernate管理的,一般情况下无需进行干预;第二级别的缓存是SessionFactory级别的缓存,它是属于进程范围或群集范围的缓存。这一级别的缓存
- 对象关系行为模式之延迟加载
home198979
PHP架构延迟加载
形象化设计模式实战 HELLO!架构
一、概念
Lazy Load:一个对象,它虽然不包含所需要的所有数据,但是知道怎么获取这些数据。
延迟加载貌似很简单,就是在数据需要时再从数据库获取,减少数据库的消耗。但这其中还是有不少技巧的。
二、实现延迟加载
实现Lazy Load主要有四种方法:延迟初始化、虚
- xml 验证
pengfeicao521
xmlxml解析
有些字符,xml不能识别,用jdom或者dom4j解析的时候就报错
public static void testPattern() {
// 含有非法字符的串
String str = "Jamey친ÑԂ
- div设置半透明效果
spjich
css半透明
为div设置如下样式:
div{filter:alpha(Opacity=80);-moz-opacity:0.5;opacity: 0.5;}
说明:
1、filter:对win IE设置半透明滤镜效果,filter:alpha(Opacity=80)代表该对象80%半透明,火狐浏览器不认2、-moz-opaci
- 你真的了解单例模式么?
w574240966
java单例设计模式jvm
单例模式,很多初学者认为单例模式很简单,并且认为自己已经掌握了这种设计模式。但事实上,你真的了解单例模式了么。
一,单例模式的5中写法。(回字的四种写法,哈哈。)
1,懒汉式
(1)线程不安全的懒汉式
public cla