- 08.学习闭环三部曲:预习、实时学习、复习
0058b195f4dc
人生就是一本效率手册,你怎样对待时间,时间就会给你同比例的回馈。单点突破法。预习,实时学习,复习。1、预习:凡事提前【计划】(1)前一晚设置三个当日目标。每周起始于每周日。(2)提前学习。预习法进行思考。预不预习效果相差20%,预习法学会提问。(3)《学会提问》。听电子书。2.实时学习(1)(10%)相应场景,思维导图,快速笔记。灵感笔记。(2)大纲,基本记录,总结篇。3.复习法则,(70%),最
- 《世说新语》竹林七贤(1)
千允
“竹林七贤”这个词语并不陌生,但这七贤都包括谁,此前我是真不知道,我想以后我也未必能全都记住。但起码通过阅读《世说新语》,我对这个七人小组有了初步的了解。陈留阮籍、谯国嵇康、河内山涛三人年皆相比,康年少亚之。预此契者,沛国刘伶、陈留阮咸、河内向秀、琅邪王戎。七人常集于竹林之下,肆意酣畅,故世谓“竹林七贤”。我看的那本《魏晋风华:轻松读懂《世说新语》》里说道:竹林七贤会集大约起于正始五年即公元244
- 零基础学习性能测试第六章:性能难点-Jmeter实现海量用户压测
目录一、海量压测核心挑战与解决思路二、分布式压测集群搭建(百倍性能提升)1.架构设计2.实战步骤三、百万级用户参数化方案1.Redis预生成测试数据2.JMeter分段读取(避免内存溢出)3.CSV分片策略四、高并发优化配置模板1.`jmeter.properties`关键修改2.线程组配置技巧五、结果收集与监控方案1.轻量级结果存储2.实时监控看板六、海量压测实战案例:双11级流量模拟测试目标:
- 听“为奥运冠军把脉的名医”段桂华教授讲解“心脏突发症的发生与预防”专题讲座
杨姐慢生活
为了唤起人们对心血管病及其危险因素的认识,普及心脏病的预防以及突发症的急救知识,在世界心脏日来临之前,由济宁市文化和旅游局主办,济宁市图书馆、济宁市图书馆学会承办,于9月22日上午在济宁市图书馆一楼多功能厅共同举办了“心脏突发症的发生与预防”专题讲座。本次讲座作为济宁市图书馆全新阅读品牌活动“杏坛讲堂”的首次活动,特邀请被誉为“为奥运冠军把脉的名医”段桂华教授为广大市民朋友讲解心脏突发症的发生与预
- 作为一名资深Oracle EBS顾问 如何在MetaERP的实施过程中发挥自己的作用
anpeng2025
OracleERP华为MetaERPSAP专题零售oraclemetaerporacleerpOracleebs华为MetaERP
作为一名资深OracleEBS顾问如何在MetaERP的实施过程中发挥自己的作用作为资深OracleEBS顾问,在MetaERP实施过程中(尤其是系统构建、测试、上线等中后期阶段),您的作用将从战略规划层面向战术执行纵深推进,成为项目落地的“压舱石”和“救火队长”。以下是关键发力点及实战策略:一、系统构建阶段:将方案转化为可执行架构1.主导核心配置与开发决策配置陷阱规避➤预判配置冲突点(如多组织架
- 8月2日长春见!行业大咖揭秘融合数据库如何赋能智能制造
檀越@新空间
s46金仓数据库数据库制造
在制造业数字化转型的浪潮中,数据已成为企业生产运营的核心驱动力。然而,海量数据的无序流转、设备故障的突发而至,往往让制造企业陷入“数据听不懂、故障预见难”的困境。为助力制造企业借助融合数据库实现数据价值的深度挖掘与设备故障的精准预判,我们诚挚邀请行业同仁共赴KING大咖面对面沙龙,深入探讨融合数据库在制造业的实践之道。本次沙龙聚焦“数据库平替之融合数据库如何让制造企业‘听懂数据、预见故障’”,特邀
- 一剪梅.中秋倚窗观月影朦胧
江南雨_b46e
一剪梅.中秋倚窗观月影朦胧今夜凭窗望颢穹。天也朦胧,月也朦胧。今宵席上一杯空。话在杯中,愿在杯中。城里风云岭外同。路也难通,物也难通。儿女满堂乐融融。坐也从容,卧也从容。融融1.和乐;恬适。《左传‧隐公元年》:“大隧之中,其乐也融融!”杜预注:“融融,和乐也。”明方孝孺《游清泉山记》:“琴音与风声相和,抑扬徐疾,琮琤澎湃,心融融如有得。”丁玲《团聚》:“在冬天,尤其是有着一点热茶,更加上有几个大芋
- Ubuntu服务器安装与运维手册——操作纯享版
夏天里的肥宅水
LINUXSQL服务器服务器运维ubuntu
本手册汇总了从硬件预配置、Ubuntu安装、网络与服务配置,到Windows/macOS访问共享、MySQL初始化的完整流程,便于今后运维参考。目录环境与硬件概览BIOS/UEFI设置制作与启动安装介质Ubuntu24.04LTS安装流程静态IP配置(netplan)SSH远程登录配置Samba文件共享配置MySQL数据库初始化FTPvsSamba对比常见问题&解决环境与硬件概览机型:DellXP
- MySql命名、设计及使用规范
在路上liu
MySqlMySql命名设计及使用规范
MySql命名、设计及使用规范《MySQL命名、设计及使用规范》数据库环境dev:开发环境,开发可读写,可修改表结构。开发人员可以修改表结构,可以随意修改其中的数据但是需要保证不影响其他开发同事。qa:测试环境,开发可读写,开发人员可以通过工具修改表结构。sim:模拟环境,开发可读写,发起上线请求时,会先在这个环境上进行预执行,这个环境也可供部署上线演练或压力测试使用。real:生产数据库从库(准
- 如何快速掌握WeNet:从零到一的端到端语音识别学习指南
Crazy learner
语音识别语音识别人工智能wenet
目录为什么选择WeNet?学习路径总览为什么优先学习AIShell示例?详细学习步骤步骤1:环境搭建1.1安装依赖1.2克隆WeNet仓库1.3硬件准备步骤2:运行AIShell示例2.1进入示例目录2.2逐阶段运行2.3各阶段详解2.4快速运行完整流程2.5使用预训练模型加速学习步骤3:掌握核心概念步骤4:实践与调试4.1使用预训练模型4.2修改配置4.3使用自定义数据4.4调试常见问题步骤5:
- 大模型微调:从零到实践,掌握AI大模型的核心技能
之之为知知
12大模型人工智能机器学习特征工程pytorch深度学习大模型微调
大模型微调:从零到实践,掌握AI大模型的核心技能引言大规模语言模型(如DeepSeek、通义千问)的出现,彻底改变了自然语言处理的格局。这些模型不仅在学术界取得了突破性进展,在工业界也得到了广泛应用。对于许多初学者来说,直接训练一个完整的大型语言模型可能显得遥不可及。幸运的是,微调(Fine-tuning)技术为我们提供了一条捷径,让我们可以基于已有的预训练模型,针对特定任务进行调整,从而快速实现
- 训练效率提升100%!阿里云后训练全栈解决方案发布实录
阿里云大数据AI技术
人工智能深度学习大模型大数据强化学习云计算
演讲人:魏博文(阿里云计算平台大数据AI解决方案总监)演讲主题:阿里云后训练解决方案活动:甲子光年围炉夜话-后训练技术闭门会目前大模型能力已经足够优秀,模型后训练作为大模型落地的重要一环,能显著优化模型性能,适配特定领域需求。相比于模型预训练,后训练阶段对计算资源和数据资源需求更小,更易迭代,为大语言模型提供了针对特定业务场景调优的能力,打通了通用大模型到垂直领域应用的"最后一公里"。阿里云大数据
- 百度文心大模型ERNIE全面解析
KENYCHEN奉孝
python实践大全AIERNIE人工智能后端文心大模型python
百度文心大模型ERNIE概述百度推出的文心大模型(ERNIE,EnhancedRepresentationthroughkNowledgeIntEgration)系列是结合知识增强技术的预训练大模型,涵盖自然语言处理(NLP)、跨模态、行业应用等多个方向。其开源版本为开发者提供了可商用的大模型能力支持。ERNIE的核心技术特点知识增强:通过多源知识图谱(如百度百科、专业领域数据)注入,提升模型对实
- RK3568笔记九十三:基于RKNN Lite的YOLOv5目标检测
殷忆枫
RK3568学习笔记笔记YOLO
若该文为原创文章,转载请注明原文出处。一、介绍Yolov5是一种目标检测算法,属于单阶段目标检测方法,是在COCO数据集上预训练的物体检测架构和模型系列,它代表了Ultralytics对未来视觉AI方法的开源研究,其中包含了经过数千小时的研究和开发而形成的经验教训和最佳实践。最新的YOLOv5v7.0有YOLOv5n、YOLOv5s、YOLOv5m、YOLOv5l、YOLOv5x等,除了目标检测,
- 基于孪生网络 (Siamese Network) 的人脸识别系统
DeniuHe
Pytorchpytorch
上一个帖子记录了基于普通CNN的人脸识别系统。但是,测试准确率实在太低了只有30%。这次使用孪生网络(SiameseNet)进行实现。代码实现使用了VGG19预训练模型作为特征提取器,通过对比学习来判断两张人脸图像是否属于同一人。整个代码分为数据准备、模型构建、训练和测试四个主要部分。importmatplotlib.pyplotaspltimporttorchfromtorchimportnnf
- 深度学习的图像分类项目在制造业场景下的数据需求量估算及实现方案(数据收集是The more the better 吗?)
shiter
人工智能系统解决方案与技术架构深度学习分类人工智能
文章大纲一、数据需求的关键影响因素二、无先验知识场景的数据需求估算优化策略与技术方案三、有先验知识场景的数据需求估算1.迁移学习(TransferLearning)2.少样本学习(Few-ShotLearning)3.预训练-微调范式四、实现方案与技术路线1.数据策略层2.模型架构层3.训练优化技术五、结论与实践建议无先验知识场景有先验知识场景✅**正确性校验**⚠️**可落地性勘误与补充****
- 浅谈 python 中的 functools.partial
functools.partial是Python标准库中一个非常强大而又常用的工具函数,常用于函数预绑定参数的场景,是“部分函数应用”的一种实现方式。一、functools.partial是什么?functools.partial的作用是:“固定”一个函数的一部分参数,返回一个新的函数对象,调用时只需要提供剩余参数。这被称之为“部分函数应用”(partialapplication)。✅二、基本用法
- RAG面试内容整理-1. 检索增强生成(RAG)概述与意义
不务正业的猿
面试AI面试RAG人工智能算法大模型检索
检索增强生成(Retrieval-AugmentedGeneration,RAG)是一种将大语言模型与外部知识库相结合的生成式AI架构。传统的大型预训练语言模型(LLM)容易受到训练语料限制,面对超出其知识范围或需要最新信息的查询时可能产生“幻觉”。RAG通过在生成答案前检索相关文档片段,引入新鲜、可信的知识,从而提升回答的准确性和时效性。RAG系统包含两个核心组件:检索器(Retriever)和
- 9、LLaMA-Factory项目微调介绍
Andy_shenzl
大模型学习llamaLLaMAFactory微调大模型LoRA
1、LLaMAFactory介绍 LLaMAFactory是一个在GitHub上开源的项目,该项目给自身的定位是:提供一个易于使用的大语言模型(LLM)微调框架,支持LLaMA、Baichuan、Qwen、ChatGLM等架构的大模型。更细致的看,该项目提供了从预训练、指令微调到RLHF阶段的开源微调解决方案。截止目前(2024年3月1日)支持约120+种不同的模型和内置了60+的数据集,同时封
- 探秘VCSI:一款创新的视觉内容识别工具
探秘VCSI:一款创新的视觉内容识别工具是一个基于深度学习的开源项目,其主要目标是帮助开发者和数据科学家进行高效、精确的视觉内容识别。在这个数字时代,我们每天都被大量的图像和视频所包围,VCSI提供了强大的工具,使得机器能够理解这些媒体内容,从而打开了一扇全新的应用之门。技术解析VCSI基于现代神经网络架构,特别是卷积神经网络(CNNs),用于图像特征提取。它利用预训练模型,如VGG16和ResN
- 阅读免费小说终于高考,始于新生林宁林婉_终于高考,始于新生林宁林婉最新完本小说
喵喵美文
《终于高考,始于新生》主角:林宁林婉简介:我死在了高考的前一天。即将咽气时,我妈用鸡毛掸子狠狠的抽在我的后背上。“一天天的就知道睡,明天就要高考了还睡呢,想要睡死,滚出去。”“看看你妹妹,再看看你,真是晦气”距离高考仅剩一天。也是医院预判死亡时间的最后期限。幸运的是,我今天终于有力气了。连起床也不觉得困难。一大早我就听到了门外的嬉闹声:“宝贝,妈妈明天就穿这件旗袍陪你参加高考,你说好不好。”“行,
- 技战法-多角度取证提升反制效果
YCL大摆子
网络安全
一、技战法概述溯源反制核心目标通过对攻击源的追踪分析,精准定位攻击者身份信息(姓名、电话、邮箱、公司、网络ID、物理位置),构建完整攻击者画像。基于画像数据解析攻击手法特征(如漏洞利用路径、工具链偏好),预判后续攻击趋势并制定针对性防御策略。在攻防演习中强化蓝队取证能力,并为真实攻击事件提供司法取证支持(如协助公安机关固定电子证据链)。溯源反制双重价值防御能力提升:通过溯源案例复盘,暴露内部人员信
- PE系统制作和安装详细教程【Windows系统安装】
IT技术视界9
软件大全windows
WindowsPE(预安装环境)是一种轻量级操作系统,专门用于为Windows安装做准备。它能在无操作系统的计算机上启动,并提供多种系统维护功能,包括:清除顽固病毒、修复磁盘引导分区、进行硬盘分区、执行数据备份以及安装操作系统等。软件下载说明[名称]:PE系统[大小]:207.2MB[语言]:简体中文[备注]:若下载链接失效,请评论区留言资源下载链接:PE系统制作和安装详细教程【Windows系统
- 预训练模型:大规模数据预学习范式——定义、原理与演进逻辑
大千AI助手
人工智能Python#OTHER学习人工智能深度学习神经网络大模型预训练transformer
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!以下基于权威教材、学术论文及行业技术报告,对“预训练模型”(Pre-trainedModel)的名称来源、技术原理及演进逻辑进行系统解析:一、名称来源与核心定义术语构成解析“预”(Pre-):指在目标任务训练前完成的先导性训练阶段。“训练”(Train
- 转角处的牵牛花
今夕何夕_ff
日近盛夏,天气转热,各式的花儿也都已绽放,天地间逐渐蒙上一层五彩的纱帐,显得缤纷而又虚幻。太阳渐渐西去,仅留下几抹淡红的余晖,与这世界作别。树上的蝉鸣正盛,它们歇斯底里地控诉着这无尽的炎热,一声高过一声,此起彼伏,仿佛是夏日的信使,呼告着,呼告着……临近傍晚,一天之中的热气逐渐消散而去,此时的习习凉风,也让人在日间的劳作与酷热中得到些许安慰——有不少人出来乘凉。听镇上的老人说,正是这样的夏夜,在过
- 无源域自适应综合研究【2】
这篇论文聚焦于无监督无源域适应(SFUDA),全面梳理了该领域的研究现状与未来方向。SFUDA使预训练模型在无需访问原始训练数据的情况下,适应一个新的未标记域。迁移学习可分为三种不同的范式(i)归纳式迁移学习,其中目标任务与源任务不同,但目标域的标签是可获取的。(ii)无监督迁移学习,其中目标任务与源任务不同,且源域和目标域的标签均不可获取。(iii)直推式迁移学习,其中源任务和目标任务是相同的但
- 想进大厂?LLMs 10道面试题提前看,有问有答,图文详解!
AI大模型-大飞
人工智能大模型chatgpt产品经理AI程序员大模型面试题
一、微调与优化21、LLM的微调流程是什么?微调(Fine-tuning)LLMs指的是在特定任务或数据上对预训练好的模型进行进一步训练,使其能更好地适应目标场景的过程,其主要流程如下:数据准备:数据收集:根据目标任务收集高质量、有代表性的数据;数据预处理:对原始数据进行清洗,如去除噪声、重复项、不相关内容等。根据模型输入要求对数据进行格式化;数据划分:将数据分为训练集、验证集和测试集,为后续模型
- 【美团3面】大模型面试题详解:大模型使用几十条数据微调后为啥性能差的很多?
AI大模型-王哥
产品经理大模型学习AI大模型人工智能大模型大模型教程程序员
一个很有意思的回答:大模型的LossLandscape是由多个“Basin”(盆地)组成的,而不是一个平滑的曲面。如果微调(Fine-Tuning)的优化方向偏离了BasicCapacityBasin,就可能容易训崩掉,虽然训崩的概率不大。大模型(如LLM)在预训练阶段通过海量数据学习,优化出一个“基本能力盆地”(BasicCapacityBasin),这个Basin代表模型具备通用语言理解、生成
- 大模型就业方向
有如下几个方向:基座模型训练工作内容:优化模型结构、数据比例,实现在各种任务上效果比较好的通用基座模型护城河:出了问题只有你能解决,给足情绪价值经验要求:必备:模型分布式框架(如deepspeed)、多机多卡训练、顶会的经验;阅读一系列LLM经典论文,例如Instruct-GPT、LORA等,从而对LLM有一个更深入、透彻的掌握。同任选:万卡集群的训练经验(包括预训练、sft、强化学习)、踩坑经验
- [深度学习 - 技巧] 通过修改预训练模型权重层修改模型输出
前阵子做了个以图搜图特征编码模型啊。(详情看上一篇)但是由于图库数据较大(上亿数据),所以2048维的特征编码存储量太大,一个特征8KB,用户并发起来服务器也够呛,而且java那边相似度计算也慢。由于图库里面的图形都比较简单,老大觉得512够用了,要我修改网络输出到512维的特征编码。但是模型网络那边提供的预训练模型,Resnet50只有输出层是2048维的。我们也不想换Resnet18(可能会较
- Java实现的基于模板的网页结构化信息精准抽取组件:HtmlExtractor
yangshangchuan
信息抽取HtmlExtractor精准抽取信息采集
HtmlExtractor是一个Java实现的基于模板的网页结构化信息精准抽取组件,本身并不包含爬虫功能,但可被爬虫或其他程序调用以便更精准地对网页结构化信息进行抽取。
HtmlExtractor是为大规模分布式环境设计的,采用主从架构,主节点负责维护抽取规则,从节点向主节点请求抽取规则,当抽取规则发生变化,主节点主动通知从节点,从而能实现抽取规则变化之后的实时动态生效。
如
- java编程思想 -- 多态
百合不是茶
java多态详解
一: 向上转型和向下转型
面向对象中的转型只会发生在有继承关系的子类和父类中(接口的实现也包括在这里)。父类:人 子类:男人向上转型: Person p = new Man() ; //向上转型不需要强制类型转化向下转型: Man man =
- [自动数据处理]稳扎稳打,逐步形成自有ADP系统体系
comsci
dp
对于国内的IT行业来讲,虽然我们已经有了"两弹一星",在局部领域形成了自己独有的技术特征,并初步摆脱了国外的控制...但是前面的路还很长....
首先是我们的自动数据处理系统还无法处理很多高级工程...中等规模的拓扑分析系统也没有完成,更加复杂的
- storm 自定义 日志文件
商人shang
stormclusterlogback
Storm中的日志级级别默认为INFO,并且,日志文件是根据worker号来进行区分的,这样,同一个log文件中的信息不一定是一个业务的,这样就会有以下两个需求出现:
1. 想要进行一些调试信息的输出
2. 调试信息或者业务日志信息想要输出到一些固定的文件中
不要怕,不要烦恼,其实Storm已经提供了这样的支持,可以通过自定义logback 下的 cluster.xml 来输
- Extjs3 SpringMVC使用 @RequestBody 标签问题记录
21jhf
springMVC使用 @RequestBody(required = false) UserVO userInfo
传递json对象数据,往往会出现http 415,400,500等错误,总结一下需要使用ajax提交json数据才行,ajax提交使用proxy,参数为jsonData,不能为params;另外,需要设置Content-type属性为json,代码如下:
(由于使用了父类aaa
- 一些排错方法
文强chu
方法
1、java.lang.IllegalStateException: Class invariant violation
at org.apache.log4j.LogManager.getLoggerRepository(LogManager.java:199)at org.apache.log4j.LogManager.getLogger(LogManager.java:228)
at o
- Swing中文件恢复我觉得很难
小桔子
swing
我那个草了!老大怎么回事,怎么做项目评估的?只会说相信你可以做的,试一下,有的是时间!
用java开发一个图文处理工具,类似word,任意位置插入、拖动、删除图片以及文本等。文本框、流程图等,数据保存数据库,其余可保存pdf格式。ok,姐姐千辛万苦,
- php 文件操作
aichenglong
PHP读取文件写入文件
1 写入文件
@$fp=fopen("$DOCUMENT_ROOT/order.txt", "ab");
if(!$fp){
echo "open file error" ;
exit;
}
$outputstring="date:"." \t tire:".$tire."
- MySQL的btree索引和hash索引的区别
AILIKES
数据结构mysql算法
Hash 索引结构的特殊性,其 检索效率非常高,索引的检索可以一次定位,不像B-Tree 索引需要从根节点到枝节点,最后才能访问到页节点这样多次的IO访问,所以 Hash 索引的查询效率要远高于 B-Tree 索引。
可能很多人又有疑问了,既然 Hash 索引的效率要比 B-Tree 高很多,为什么大家不都用 Hash 索引而还要使用 B-Tree 索引呢
- JAVA的抽象--- 接口 --实现
百合不是茶
抽象 接口 实现接口
//抽象 类 ,方法
//定义一个公共抽象的类 ,并在类中定义一个抽象的方法体
抽象的定义使用abstract
abstract class A 定义一个抽象类 例如:
//定义一个基类
public abstract class A{
//抽象类不能用来实例化,只能用来继承
//
- JS变量作用域实例
bijian1013
作用域
<script>
var scope='hello';
function a(){
console.log(scope); //undefined
var scope='world';
console.log(scope); //world
console.log(b);
- TDD实践(二)
bijian1013
javaTDD
实践题目:分解质因数
Step1:
单元测试:
package com.bijian.study.factor.test;
import java.util.Arrays;
import junit.framework.Assert;
import org.junit.Before;
import org.junit.Test;
import com.bijian.
- [MongoDB学习笔记一]MongoDB主从复制
bit1129
mongodb
MongoDB称为分布式数据库,主要原因是1.基于副本集的数据备份, 2.基于切片的数据扩容。副本集解决数据的读写性能问题,切片解决了MongoDB的数据扩容问题。
事实上,MongoDB提供了主从复制和副本复制两种备份方式,在MongoDB的主从复制和副本复制集群环境中,只有一台作为主服务器,另外一台或者多台服务器作为从服务器。 本文介绍MongoDB的主从复制模式,需要指明
- 【HBase五】Java API操作HBase
bit1129
hbase
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.hbase.HBaseConfiguration;
import org.apache.hadoop.hbase.HColumnDescriptor;
import org.apache.ha
- python调用zabbix api接口实时展示数据
ronin47
zabbix api接口来进行展示。经过思考之后,计划获取如下内容: 1、 获得认证密钥 2、 获取zabbix所有的主机组 3、 获取单个组下的所有主机 4、 获取某个主机下的所有监控项  
- jsp取得绝对路径
byalias
绝对路径
在JavaWeb开发中,常使用绝对路径的方式来引入JavaScript和CSS文件,这样可以避免因为目录变动导致引入文件找不到的情况,常用的做法如下:
一、使用${pageContext.request.contextPath}
代码” ${pageContext.request.contextPath}”的作用是取出部署的应用程序名,这样不管如何部署,所用路径都是正确的。
- Java定时任务调度:用ExecutorService取代Timer
bylijinnan
java
《Java并发编程实战》一书提到的用ExecutorService取代Java Timer有几个理由,我认为其中最重要的理由是:
如果TimerTask抛出未检查的异常,Timer将会产生无法预料的行为。Timer线程并不捕获异常,所以 TimerTask抛出的未检查的异常会终止timer线程。这种情况下,Timer也不会再重新恢复线程的执行了;它错误的认为整个Timer都被取消了。此时,已经被
- SQL 优化原则
chicony
sql
一、问题的提出
在应用系统开发初期,由于开发数据库数据比较少,对于查询SQL语句,复杂视图的的编写等体会不出SQL语句各种写法的性能优劣,但是如果将应用系统提交实际应用后,随着数据库中数据的增加,系统的响应速度就成为目前系统需要解决的最主要的问题之一。系统优化中一个很重要的方面就是SQL语句的优化。对于海量数据,劣质SQL语句和优质SQL语句之间的速度差别可以达到上百倍,可见对于一个系统
- java 线程弹球小游戏
CrazyMizzz
java游戏
最近java学到线程,于是做了一个线程弹球的小游戏,不过还没完善
这里是提纲
1.线程弹球游戏实现
1.实现界面需要使用哪些API类
JFrame
JPanel
JButton
FlowLayout
Graphics2D
Thread
Color
ActionListener
ActionEvent
MouseListener
Mouse
- hadoop jps出现process information unavailable提示解决办法
daizj
hadoopjps
hadoop jps出现process information unavailable提示解决办法
jps时出现如下信息:
3019 -- process information unavailable3053 -- process information unavailable2985 -- process information unavailable2917 --
- PHP图片水印缩放类实现
dcj3sjt126com
PHP
<?php
class Image{
private $path;
function __construct($path='./'){
$this->path=rtrim($path,'/').'/';
}
//水印函数,参数:背景图,水印图,位置,前缀,TMD透明度
public function water($b,$l,$pos
- IOS控件学习:UILabel常用属性与用法
dcj3sjt126com
iosUILabel
参考网站:
http://shijue.me/show_text/521c396a8ddf876566000007
http://www.tuicool.com/articles/zquENb
http://blog.csdn.net/a451493485/article/details/9454695
http://wiki.eoe.cn/page/iOS_pptl_artile_281
- 完全手动建立maven骨架
eksliang
javaeclipseWeb
建一个 JAVA 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=App
[-Dversion=0.0.1-SNAPSHOT]
[-Dpackaging=jar]
建一个 web 项目 :
mvn archetype:create
-DgroupId=com.demo
-DartifactId=web-a
- 配置清单
gengzg
配置
1、修改grub启动的内核版本
vi /boot/grub/grub.conf
将default 0改为1
拷贝mt7601Usta.ko到/lib文件夹
拷贝RT2870STA.dat到 /etc/Wireless/RT2870STA/文件夹
拷贝wifiscan到bin文件夹,chmod 775 /bin/wifiscan
拷贝wifiget.sh到bin文件夹,chm
- Windows端口被占用处理方法
huqiji
windows
以下文章主要以80端口号为例,如果想知道其他的端口号也可以使用该方法..........................1、在windows下如何查看80端口占用情况?是被哪个进程占用?如何终止等. 这里主要是用到windows下的DOS工具,点击"开始"--"运行",输入&
- 开源ckplayer 网页播放器, 跨平台(html5, mobile),flv, f4v, mp4, rtmp协议. webm, ogg, m3u8 !
天梯梦
mobile
CKplayer,其全称为超酷flv播放器,它是一款用于网页上播放视频的软件,支持的格式有:http协议上的flv,f4v,mp4格式,同时支持rtmp视频流格 式播放,此播放器的特点在于用户可以自己定义播放器的风格,诸如播放/暂停按钮,静音按钮,全屏按钮都是以外部图片接口形式调用,用户根据自己的需要制作 出播放器风格所需要使用的各个按钮图片然后替换掉原始风格里相应的图片就可以制作出自己的风格了,
- 简单工厂设计模式
hm4123660
java工厂设计模式简单工厂模式
简单工厂模式(Simple Factory Pattern)属于类的创新型模式,又叫静态工厂方法模式。是通过专门定义一个类来负责创建其他类的实例,被创建的实例通常都具有共同的父类。简单工厂模式是由一个工厂对象决定创建出哪一种产品类的实例。简单工厂模式是工厂模式家族中最简单实用的模式,可以理解为是不同工厂模式的一个特殊实现。
- maven笔记
zhb8015
maven
跳过测试阶段:
mvn package -DskipTests
临时性跳过测试代码的编译:
mvn package -Dmaven.test.skip=true
maven.test.skip同时控制maven-compiler-plugin和maven-surefire-plugin两个插件的行为,即跳过编译,又跳过测试。
指定测试类
mvn test
- 非mapreduce生成Hfile,然后导入hbase当中
Stark_Summer
maphbasereduceHfilepath实例
最近一个群友的boss让研究hbase,让hbase的入库速度达到5w+/s,这可愁死了,4台个人电脑组成的集群,多线程入库调了好久,速度也才1w左右,都没有达到理想的那种速度,然后就想到了这种方式,但是网上多是用mapreduce来实现入库,而现在的需求是实时入库,不生成文件了,所以就只能自己用代码实现了,但是网上查了很多资料都没有查到,最后在一个网友的指引下,看了源码,最后找到了生成Hfile
- jsp web tomcat 编码问题
王新春
tomcatjsppageEncode
今天配置jsp项目在tomcat上,windows上正常,而linux上显示乱码,最后定位原因为tomcat 的server.xml 文件的配置,添加 URIEncoding 属性:
<Connector port="8080" protocol="HTTP/1.1"
connectionTi