CSharpGL(1)从最简单的例子开始使用CSharpGL
在VS2013中使用设计好的控件GLCanvas。
借助GLCanvas,用legacy OpenGL绘制一个四面体。
借助GLCanvas,用modern OpenGL绘制一个四面体。
您可以在(https://github.com/bitzhuwei/CSharpGL)找到最新的源码。欢迎感兴趣的同学fork之。
如果您不会用GitHub,可以点此(https://github.com/bitzhuwei/CSharpGL/archive/master.zip)下载zip包。
万事开头难,你在下载打开CSharpGL后,应该能看到下图所示的解决方案。打开CSharpGL.Winforms.Demo项目下的FormPyramidVAOElement,会看到一个窗口里的四面体在慢慢旋转。这就是用OpenGL绘制的。
为了演示全部过程,我们新建一个项目"HelloCSharpGL"。
刚刚新建的项目如下图所示。
我们需要添加对CSharpGL各个类库的引用,如下图所示。
如下图所示,添加这么几个类库:
Utilities:含有一些辅助类型。
CSharpGL:封装了OpenGL指令。
CSharpGL.Maths:封装了对矩阵和向量的操作。
CSharpGL.Objects:含有Camera、RenderContext、Shader、SceneElement、Picking、UI等类型。
CSharpGL.Winforms:含有GLCanvas控件。
这几个库都是必须的。
此时,打开"工具箱",就会看到GLCanvas控件。
把GLCanvas控件拖拽到Form1窗体上,并设置其Anchor属性。
下面,我们先编译一下。
编译成功之后,关闭Form1,然后再次打开Form1,你会看到本篇最开头所示的GLCanvas控件中出现一个旋转的四面体。
注意,这只是在设计阶段的效果,在运行时并不会显示任何内容。不信的话,现在我们把HelloCSharpGL项目设为启动项。
然后,点击"启动",我们来看看启动后的程序是什么效果。
你会看到一个漆黑的窗口。此时GLCanvas并没有绘制任何内容。
这样,GLCanvas就成功添加到窗口中了。
下面我们分别说明如何用legacy OpenGL和modern OpenGL绘图。
继续上文所述,双击Form1中的GLCanvas控件,进入"OpenGLDraw"事件代码。编写下面所述的代码。
1 private void glCanvas1_OpenGLDraw(object sender, PaintEventArgs e) 2 { 3 // Clear the color and depth buffer. 4 GL.Clear(GL.GL_COLOR_BUFFER_BIT | GL.GL_DEPTH_BUFFER_BIT); 5 6 DrawPyramid(); 7 } 8 9 public static void DrawPyramid() 10 { 11 // Load the identity matrix. 12 GL.LoadIdentity(); 13 14 // Rotate around the Y axis. 15 GL.Rotate(rotation, 0.0f, 1.0f, 0.0f); 16 17 // Draw a coloured pyramid. 18 GL.Begin(GL.GL_TRIANGLES); 19 GL.Color(1.0f, 0.0f, 0.0f); 20 GL.Vertex(0.0f, 1.0f, 0.0f); 21 GL.Color(0.0f, 1.0f, 0.0f); 22 GL.Vertex(-1.0f, -1.0f, 1.0f); 23 GL.Color(0.0f, 0.0f, 1.0f); 24 GL.Vertex(1.0f, -1.0f, 1.0f); 25 GL.Color(1.0f, 0.0f, 0.0f); 26 GL.Vertex(0.0f, 1.0f, 0.0f); 27 GL.Color(0.0f, 0.0f, 1.0f); 28 GL.Vertex(1.0f, -1.0f, 1.0f); 29 GL.Color(0.0f, 1.0f, 0.0f); 30 GL.Vertex(1.0f, -1.0f, -1.0f); 31 GL.Color(1.0f, 0.0f, 0.0f); 32 GL.Vertex(0.0f, 1.0f, 0.0f); 33 GL.Color(0.0f, 1.0f, 0.0f); 34 GL.Vertex(1.0f, -1.0f, -1.0f); 35 GL.Color(0.0f, 0.0f, 1.0f); 36 GL.Vertex(-1.0f, -1.0f, -1.0f); 37 GL.Color(1.0f, 0.0f, 0.0f); 38 GL.Vertex(0.0f, 1.0f, 0.0f); 39 GL.Color(0.0f, 0.0f, 1.0f); 40 GL.Vertex(-1.0f, -1.0f, -1.0f); 41 GL.Color(0.0f, 1.0f, 0.0f); 42 GL.Vertex(-1.0f, -1.0f, 1.0f); 43 GL.End(); 44 45 rotation += 3.0f; 46 } 47 48 private double rotation;
我们已经添加了用legacy OpenGL绘制四面体的代码,现在就编译运行起来看看效果。
可以看到,确实绘制出了一个四面体。不过它距离窗口太近了,以至于一部分内容被削去了。下面我们把它放到合适的位置去。更准确地说,是把Camera移动到合适的位置去。
为GLCanvas控件的Resize事件添加代码。
在GLCanvas调整大小时,就会自动调用Resize事件,所以在这里调整投影矩阵和视图矩阵是最合适的。
视图矩阵指定了Camera的位置、朝向和上方。投影矩阵指定了Camera的透视模式和拍摄范围。
1 private void glCanvas1_Resize(object sender, EventArgs e) 2 { 3 ResizeGL(glCanvas1.Width, glCanvas1.Height); 4 } 5 void ResizeGL(double width, double height) 6 { 7 // Set the projection matrix. 8 GL.MatrixMode(GL.GL_PROJECTION); 9 10 // Load the identity. 11 GL.LoadIdentity(); 12 13 // Create a perspective transformation. 14 GL.gluPerspective(60.0f, width / height, 0.01, 100.0); 15 16 // Use the 'look at' helper function to position and aim the camera. 17 GL.gluLookAt(-5, 5, -5, 0, 0, 0, 0, 1, 0); 18 19 // Set the modelview matrix. 20 GL.MatrixMode(GL.GL_MODELVIEW); 21 }
现在再次编译运行,可以看到效果如下。
Legacy OpenGL绘制四面体到此就成功完成了。可以看到这是十分简单的,拖拽一个GLCanvas控件,在"OpenGLDraw"事件里绘制模型,在"Resize"事件里调整Camera。就这么点事。
Legacy OpenGL的缺点是,当模型的顶点很多时,需要频繁调用glVertex(还有glColor、glTexCoord等),这样的执行效率是很低的。下面要讲的modern OpenGL就可以大幅提升渲染效率。
用modern OpenGL需要准备的东西比较多,我们一个一个来。
我们新建一个窗体来演示modern OpenGL的写法。
新建的窗体名就叫做"FormModernOpenGL"。
然后也拖拽一个GLCanvas给FormModernOpenGL。也设置好Anchor属性。
我们添加一个PyramidDemo类,用于加载shader、四面体模型和渲染操作。
我们暂时先不实现PyramidDemo,就让它占个坑位。
Modern OpenGL需要用GLSL编写的shader进行渲染。其中必不可少的是vertex shader和fragment shader。现在来准备vertex shader。
shader本质是一个供GPU使用的源代码,所以用"文本文件"即可。Vertex shader命名为"PyramidDemo.vert"。
PyramidDemo.vert内容如下:
1 #version 150 core 2 3 in vec3 in_Position; 4 in vec3 in_Color; 5 out vec4 pass_Color; 6 7 uniform mat4 MVP; 8 9 void main(void) 10 { 11 gl_Position = MVP * vec4(in_Position, 1.0);// setup vertex's position 12 13 pass_Color = vec4(in_Color, 1.0);// pass color to fragment shader 14 }
注意:shader里即使是注释也不能有中文字符,否则会出现编译错误。也许以后的OpenGL版本会改善这一点。
同理准备fragment shader。
Fragment shader内容如下:
1 #version 150 core 2 3 in vec4 pass_Color; 4 out vec4 out_Color;// any name for 'out_Color' is OK, but make sure it's a 'out vec4' 5 6 void main(void) 7 { 8 out_Color = pass_Color;// setup color for this fragment 9 }
为了使用shader文件,我们需要设置一下shader文件的属性。
设置"复制到输出目录"属性为"如果较新则复制"。
有了shader的源代码,现在我们来加载shader。这就需要添加一个Shader类和一个ShaderProgram类。
Shader类用于加载一个Shader(vertex shader或fragment shader)
1 /// <summary> 2 /// This is the base class for all shaders (vertex and fragment). It offers functionality 3 /// which is core to all shaders, such as file loading and binding. 4 /// </summary> 5 public class Shader 6 { 7 public void Create(uint shaderType, string source) 8 { 9 // Create the OpenGL shader object. 10 ShaderObject = GL.CreateShader(shaderType); 11 12 // Set the shader source. 13 GL.ShaderSource(ShaderObject, source); 14 15 // Compile the shader object. 16 GL.CompileShader(ShaderObject); 17 18 // Now that we've compiled the shader, check it's compilation status. If it's not compiled properly, we're 19 // going to throw an exception. 20 if (GetCompileStatus() == false) 21 { 22 string log = GetInfoLog(); 23 throw new ShaderCompilationException(string.Format("Failed to compile shader with ID {0}.", ShaderObject), log); 24 } 25 } 26 27 public void Delete() 28 { 29 GL.DeleteShader(ShaderObject); 30 ShaderObject = 0; 31 } 32 33 public bool GetCompileStatus() 34 { 35 int[] parameters = new int[] { 0 }; 36 GL.GetShader(ShaderObject, GL.GL_COMPILE_STATUS, parameters); 37 return parameters[0] == GL.GL_TRUE; 38 } 39 40 public string GetInfoLog() 41 { 42 // Get the info log length. 43 int[] infoLength = new int[] { 0 }; 44 GL.GetShader(ShaderObject, 45 GL.GL_INFO_LOG_LENGTH, infoLength); 46 int bufSize = infoLength[0]; 47 48 // Get the compile info. 49 StringBuilder il = new StringBuilder(bufSize); 50 GL.GetShaderInfoLog(ShaderObject, bufSize, IntPtr.Zero, il); 51 52 string log = il.ToString(); 53 return log; 54 } 55 56 /// <summary> 57 /// Gets the shader object. 58 /// </summary> 59 public uint ShaderObject { get; protected set; } 60 }
ShaderProgram类用于加载ShaderProgram。
1 public class ShaderProgram 2 { 3 private readonly Shader vertexShader = new Shader(); 4 private readonly Shader fragmentShader = new Shader(); 5 6 /// <summary> 7 /// Creates the shader program. 8 /// </summary> 9 /// <param name="vertexShaderSource">The vertex shader source.</param> 10 /// <param name="fragmentShaderSource">The fragment shader source.</param> 11 /// <param name="attributeLocations">The attribute locations. This is an optional array of 12 /// uint attribute locations to their names.</param> 13 /// <exception cref="ShaderCompilationException"></exception> 14 public void Create(string vertexShaderSource, string fragmentShaderSource, 15 Dictionary<uint, string> attributeLocations) 16 { 17 // Create the shaders. 18 vertexShader.Create(GL.GL_VERTEX_SHADER, vertexShaderSource); 19 fragmentShader.Create(GL.GL_FRAGMENT_SHADER, fragmentShaderSource); 20 21 // Create the program, attach the shaders. 22 ShaderProgramObject = GL.CreateProgram(); 23 GL.AttachShader(ShaderProgramObject, vertexShader.ShaderObject); 24 GL.AttachShader(ShaderProgramObject, fragmentShader.ShaderObject); 25 26 // Before we link, bind any vertex attribute locations. 27 if (attributeLocations != null) 28 { 29 foreach (var vertexAttributeLocation in attributeLocations) 30 GL.BindAttribLocation(ShaderProgramObject, vertexAttributeLocation.Key, vertexAttributeLocation.Value); 31 } 32 33 // Now we can link the program. 34 GL.LinkProgram(ShaderProgramObject); 35 36 // Now that we've compiled and linked the shader, check it's link status. If it's not linked properly, we're 37 // going to throw an exception. 38 if (GetLinkStatus() == false) 39 { 40 throw new ShaderCompilationException(string.Format("Failed to link shader program with ID {0}.", ShaderProgramObject), GetInfoLog()); 41 } 42 } 43 44 public void Delete() 45 { 46 GL.DetachShader(ShaderProgramObject, vertexShader.ShaderObject); 47 GL.DetachShader(ShaderProgramObject, fragmentShader.ShaderObject); 48 vertexShader.Delete(); 49 fragmentShader.Delete(); 50 GL.DeleteProgram(ShaderProgramObject); 51 ShaderProgramObject = 0; 52 } 53 54 public uint GetAttributeLocation(string attributeName) 55 { 56 // If we don't have the attribute name in the dictionary, get it's 57 // location and add it. 58 if (attributeNamesToLocations.ContainsKey(attributeName) == false) 59 { 60 int location = GL.GetAttribLocation(ShaderProgramObject, attributeName); 61 if (location < 0) { throw new Exception(); } 62 63 attributeNamesToLocations[attributeName] = (uint)location; 64 } 65 66 // Return the attribute location. 67 return attributeNamesToLocations[attributeName]; 68 } 69 70 public void BindAttributeLocation(uint location, string attribute) 71 { 72 GL.BindAttribLocation(ShaderProgramObject, location, attribute); 73 } 74 75 public void Bind() 76 { 77 GL.UseProgram(ShaderProgramObject); 78 } 79 80 public void Unbind() 81 { 82 GL.UseProgram(0); 83 } 84 85 public bool GetLinkStatus() 86 { 87 int[] parameters = new int[] { 0 }; 88 GL.GetProgram(ShaderProgramObject, GL.GL_LINK_STATUS, parameters); 89 return parameters[0] == GL.GL_TRUE; 90 } 91 92 public string GetInfoLog() 93 { 94 // Get the info log length. 95 int[] infoLength = new int[] { 0 }; 96 GL.GetProgram(ShaderProgramObject, GL.GL_INFO_LOG_LENGTH, infoLength); 97 int bufSize = infoLength[0]; 98 99 // Get the compile info. 100 StringBuilder il = new StringBuilder(bufSize); 101 GL.GetProgramInfoLog(ShaderProgramObject, bufSize, IntPtr.Zero, il); 102 103 string log = il.ToString(); 104 return log; 105 } 106 107 public void AssertValid() 108 { 109 if (vertexShader.GetCompileStatus() == false) 110 { 111 string log = vertexShader.GetInfoLog(); 112 throw new Exception(log); 113 } 114 if (fragmentShader.GetCompileStatus() == false) 115 { 116 string log = fragmentShader.GetInfoLog(); 117 throw new Exception(log); 118 } 119 if (GetLinkStatus() == false) 120 { 121 string log = GetInfoLog(); 122 throw new Exception(log); 123 } 124 } 125 126 /// <summary> 127 /// 请注意你的数据类型最终将转换为int还是float 128 /// </summary> 129 /// <param name="uniformName"></param> 130 /// <param name="v1"></param> 131 public void SetUniform(string uniformName, int v1) 132 { 133 GL.Uniform1(GetUniformLocation(uniformName), v1); 134 } 135 136 /// <summary> 137 /// 请注意你的数据类型最终将转换为int还是float 138 /// </summary> 139 /// <param name="uniformName"></param> 140 /// <param name="v1"></param> 141 /// <param name="v2"></param> 142 public void SetUniform(string uniformName, int v1, int v2) 143 { 144 GL.Uniform2(GetUniformLocation(uniformName), v1, v2); 145 } 146 147 /// <summary> 148 /// 请注意你的数据类型最终将转换为int还是float 149 /// </summary> 150 /// <param name="uniformName"></param> 151 /// <param name="v1"></param> 152 /// <param name="v2"></param> 153 /// <param name="v3"></param> 154 public void SetUniform(string uniformName, int v1, int v2, int v3) 155 { 156 GL.Uniform3(GetUniformLocation(uniformName), v1, v2, v3); 157 } 158 159 /// <summary> 160 /// 请注意你的数据类型最终将转换为int还是float 161 /// </summary> 162 /// <param name="uniformName"></param> 163 /// <param name="v1"></param> 164 /// <param name="v2"></param> 165 /// <param name="v3"></param> 166 /// <param name="v4"></param> 167 public void SetUniform(string uniformName, int v1, int v2, int v3, int v4) 168 { 169 GL.Uniform4(GetUniformLocation(uniformName), v1, v2, v3, v4); 170 } 171 172 /// <summary> 173 /// 请注意你的数据类型最终将转换为int还是float 174 /// </summary> 175 /// <param name="uniformName"></param> 176 /// <param name="v1"></param> 177 public void SetUniform(string uniformName, float v1) 178 { 179 GL.Uniform1(GetUniformLocation(uniformName), v1); 180 } 181 182 /// <summary> 183 /// 请注意你的数据类型最终将转换为int还是float 184 /// </summary> 185 /// <param name="uniformName"></param> 186 /// <param name="v1"></param> 187 /// <param name="v2"></param> 188 public void SetUniform(string uniformName, float v1, float v2) 189 { 190 GL.Uniform2(GetUniformLocation(uniformName), v1, v2); 191 } 192 193 /// <summary> 194 /// 请注意你的数据类型最终将转换为int还是float 195 /// </summary> 196 /// <param name="uniformName"></param> 197 /// <param name="v1"></param> 198 /// <param name="v2"></param> 199 /// <param name="v3"></param> 200 public void SetUniform(string uniformName, float v1, float v2, float v3) 201 { 202 GL.Uniform3(GetUniformLocation(uniformName), v1, v2, v3); 203 } 204 205 /// <summary> 206 /// 请注意你的数据类型最终将转换为int还是float 207 /// </summary> 208 /// <param name="uniformName"></param> 209 /// <param name="v1"></param> 210 /// <param name="v2"></param> 211 /// <param name="v3"></param> 212 /// <param name="v4"></param> 213 public void SetUniform(string uniformName, float v1, float v2, float v3, float v4) 214 { 215 GL.Uniform4(GetUniformLocation(uniformName), v1, v2, v3, v4); 216 } 217 218 /// <summary> 219 /// 请注意你的数据类型最终将转换为int还是float 220 /// </summary> 221 /// <param name="uniformName"></param> 222 /// <param name="m"></param> 223 public void SetUniformMatrix3(string uniformName, float[] m) 224 { 225 GL.UniformMatrix3(GetUniformLocation(uniformName), 1, false, m); 226 } 227 228 /// <summary> 229 /// 请注意你的数据类型最终将转换为int还是float 230 /// </summary> 231 /// <param name="uniformName"></param> 232 /// <param name="m"></param> 233 public void SetUniformMatrix4(string uniformName, float[] m) 234 { 235 GL.UniformMatrix4(GetUniformLocation(uniformName), 1, false, m); 236 } 237 238 public int GetUniformLocation(string uniformName) 239 { 240 // If we don't have the uniform name in the dictionary, get it's 241 // location and add it. 242 if (uniformNamesToLocations.ContainsKey(uniformName) == false) 243 { 244 uniformNamesToLocations[uniformName] = GL.GetUniformLocation(ShaderProgramObject, uniformName); 245 // TODO: if it's not found, we should probably throw an exception. 246 } 247 248 // Return the uniform location. 249 return uniformNamesToLocations[uniformName]; 250 } 251 252 /// <summary> 253 /// Gets the shader program object. 254 /// </summary> 255 /// <value> 256 /// The shader program object. 257 /// </value> 258 public uint ShaderProgramObject { get; protected set; } 259 260 261 /// <summary> 262 /// A mapping of uniform names to locations. This allows us to very easily specify 263 /// uniform data by name, quickly looking up the location first if needed. 264 /// </summary> 265 private readonly Dictionary<string, int> uniformNamesToLocations = new Dictionary<string, int>(); 266 267 /// <summary> 268 /// A mapping of attribute names to locations. This allows us to very easily specify 269 /// attribute data by name, quickly looking up the location first if needed. 270 /// </summary> 271 private readonly Dictionary<string, uint> attributeNamesToLocations = new Dictionary<string, uint>(); 272 }
另外,添加一个辅助类ShaderCompilationException。
1 [Serializable] 2 public class ShaderCompilationException : Exception 3 { 4 private readonly string compilerOutput; 5 6 public ShaderCompilationException(string compilerOutput) 7 { 8 this.compilerOutput = compilerOutput; 9 } 10 public ShaderCompilationException(string message, string compilerOutput) 11 : base(message) 12 { 13 this.compilerOutput = compilerOutput; 14 } 15 public ShaderCompilationException(string message, Exception inner, string compilerOutput) 16 : base(message, inner) 17 { 18 this.compilerOutput = compilerOutput; 19 } 20 protected ShaderCompilationException( 21 System.Runtime.Serialization.SerializationInfo info, 22 System.Runtime.Serialization.StreamingContext context) 23 : base(info, context) { } 24 25 public string CompilerOutput { get { return compilerOutput; } } 26 }
在PyramidDemo里实现。
1 private ShaderProgram shaderProgram; 2 3 public void Initilize() 4 { 5 InitShaderProgram(); 6 } 7 8 private void InitShaderProgram() 9 { 10 var vertexShaderSource = File.ReadAllText(@"PyramidDemo.vert"); 11 var fragmentShaderSource = File.ReadAllText(@"PyramidDemo.frag"); 12 13 this.shaderProgram = new ShaderProgram(); 14 15 this.shaderProgram.Create(vertexShaderSource, fragmentShaderSource, null); 16 this.shaderProgram.AssertValid(); 17 18 }
四面体模型的数据还是legacy OpenGL里的数据,但是不再用glVertex设置,而是用VAO/VBO来指定。
1 const int vertexCount = 12; 2 private uint[] vertexArrayObject; 3 4 public void Initilize() 5 { 6 InitShaderProgram(); 7 8 InitVAO(); 9 } 10 11 private void InitVAO() 12 { 13 // reserve a vertex array object(VAO) 预约一个VAO 14 this.vertexArrayObject = new uint[1]; 15 GL.GenVertexArrays(1, this.vertexArrayObject); 16 17 // prepare vertex buffer object(VBO) for vertexes' positions 为顶点位置准备VBO 18 uint[] positionBufferObject = new uint[1]; 19 { 20 // specify position array 21 var positionArray = new UnmanagedArray<vec3>(vertexCount); 22 positionArray[0] = new vec3(0.0f, 1.0f, 0.0f); 23 positionArray[1] = new vec3(-1.0f, -1.0f, 1.0f); 24 positionArray[2] = new vec3(1.0f, -1.0f, 1.0f); 25 positionArray[3] = new vec3(0.0f, 1.0f, 0.0f); 26 positionArray[4] = new vec3(1.0f, -1.0f, 1.0f); 27 positionArray[5] = new vec3(1.0f, -1.0f, -1.0f); 28 positionArray[6] = new vec3(0.0f, 1.0f, 0.0f); 29 positionArray[7] = new vec3(1.0f, -1.0f, -1.0f); 30 positionArray[8] = new vec3(-1.0f, -1.0f, -1.0f); 31 positionArray[9] = new vec3(0.0f, 1.0f, 0.0f); 32 positionArray[10] = new vec3(-1.0f, -1.0f, -1.0f); 33 positionArray[11] = new vec3(-1.0f, -1.0f, 1.0f); 34 35 // put positions into VBO 36 GL.GenBuffers(1, positionBufferObject); 37 GL.BindBuffer(BufferTarget.ArrayBuffer, positionBufferObject[0]); 38 GL.BufferData(BufferTarget.ArrayBuffer, positionArray, BufferUsage.StaticDraw); 39 40 positionArray.Dispose(); 41 } 42 43 // prepare vertex buffer object(VBO) for vertexes' colors 44 uint[] colorBufferObject = new uint[1]; 45 { 46 // specify color array 47 UnmanagedArray<vec3> colorArray = new UnmanagedArray<vec3>(vertexCount); 48 colorArray[0] = new vec3(1.0f, 0.0f, 0.0f); 49 colorArray[1] = new vec3(0.0f, 1.0f, 0.0f); 50 colorArray[2] = new vec3(0.0f, 0.0f, 1.0f); 51 colorArray[3] = new vec3(1.0f, 0.0f, 0.0f); 52 colorArray[4] = new vec3(0.0f, 0.0f, 1.0f); 53 colorArray[5] = new vec3(0.0f, 1.0f, 0.0f); 54 colorArray[6] = new vec3(1.0f, 0.0f, 0.0f); 55 colorArray[7] = new vec3(0.0f, 1.0f, 0.0f); 56 colorArray[8] = new vec3(0.0f, 0.0f, 1.0f); 57 colorArray[9] = new vec3(1.0f, 0.0f, 0.0f); 58 colorArray[10] = new vec3(0.0f, 0.0f, 1.0f); 59 colorArray[11] = new vec3(0.0f, 1.0f, 0.0f); 60 61 // put colors into VBO 62 GL.GenBuffers(1, colorBufferObject); 63 GL.BindBuffer(BufferTarget.ArrayBuffer, colorBufferObject[0]); 64 GL.BufferData(BufferTarget.ArrayBuffer, colorArray, BufferUsage.StaticDraw); 65 66 colorArray.Dispose(); 67 } 68 69 uint positionLocation = shaderProgram.GetAttributeLocation("in_Position"); 70 uint colorLocation = shaderProgram.GetAttributeLocation("in_Color"); 71 72 { 73 // bind the vertex array object(VAO), we are going to specify data for it. 74 GL.BindVertexArray(vertexArrayObject[0]); 75 76 // specify vertexes' positions 77 GL.BindBuffer(BufferTarget.ArrayBuffer, positionBufferObject[0]); 78 GL.VertexAttribPointer(positionLocation, 3, GL.GL_FLOAT, false, 0, IntPtr.Zero); 79 GL.EnableVertexAttribArray(positionLocation); 80 81 // specify vertexes' colors 82 GL.BindBuffer(BufferTarget.ArrayBuffer, colorBufferObject[0]); 83 GL.VertexAttribPointer(colorLocation, 3, GL.GL_FLOAT, false, 0, IntPtr.Zero); 84 GL.EnableVertexAttribArray(colorLocation); 85 86 // Unbind the vertex array object(VAO), we've finished specifying data for it. 87 GL.BindVertexArray(0); 88 } 89 }
关于这里的UnmanagedArray<vec3>类型,您可以在这里找到详细介绍(C#+无unsafe的非托管大数组(large unmanaged array in c# without 'unsafe' keyword))。
现在shader已加载,VAO/VBO已准备好了模型数据(位置和颜色),就差渲染这一步了。
public void Render() { mat4 mvp; { // model rotates mat4 modelMatrix = glm.rotate(rotation, new vec3(0, 1, 0)); // same as gluLookAt() mat4 viewMatrix = glm.lookAt(new vec3(-5, 5, -5), new vec3(0, 0, 0), new vec3(0, 1, 0)); // same as gluPerspective() int[] viewport = new int[4]; GL.GetInteger(GetTarget.Viewport, viewport); float width = viewport[2]; float height = viewport[3]; mat4 projectionMatrix = glm.perspective((float)(60.0f * Math.PI / 180.0f), width / height, 0.01f, 100.0f); // get MVP in "uniform mat4 MVP;" in the vertex shader mvp = projectionMatrix * viewMatrix * modelMatrix; } // bind the shader program to setup uniforms this.shaderProgram.Bind(); // setup MVP this.shaderProgram.SetUniformMatrix4("MVP", mvp.to_array()); { // bind vertex array object(VAO) GL.BindVertexArray(this.vertexArrayObject[0]); // draw the model: in GL_TRIANGLES mode, there are 'vertexCount' vertexes GL.DrawArrays(GL.GL_TRIANGLES, 0, vertexCount); // unbind vertex array object(VAO) GL.BindVertexArray(0); } // unbind the shader program this.shaderProgram.Unbind(); rotation += 3.0f; } private float rotation;
Modern OpenGL渲染的效果与legacy OpenGL并没有差别。
可以看到,用legacy OpenGL的步骤相对modern OpenGL而言是十分简单的。而想用modern OpenGL渲染时,我们编写了Shader、ShaderProgram、mat4、vec3、UnmanagedArray<T>等大量的类型,到此才完成了modern OpenGL的一个简单示例的代码。这其中任何一个步骤出一点错误都可能导致最终无法正常渲染,且调试难度很大。OpenGL难学大概就在这里了。
但是legacy OpenGL在渲染时调用的OpenGL指令比modern OpenGL多得多。另外,modern OpenGL用VAO/VBO会把模型数据上传到显卡内存,这也大大加速的渲染过程。再者,modern OpenGL用shader代替了固定管线,shader比固定管线灵活得多,用惯了会觉得既好用又强大。所以我们还是要坚持学用modern OpenGL。
我制作了一个CSharpGL.vsix插件,安装后可以使用模板项目来体会CSharpGL的用法。
详情在此(http://www.cnblogs.com/bitzhuwei/p/install-and-use-CSharpGL-vsix.html)。
本篇分别用legacy OpenGL和modern OpenGL实现了一个渲染四面体的例子。例子虽简单,但是包含了OpenGL渲染的整个编码过程。今后我们的工作都是基于这个基本流程进行的,只不过在各个方面进行强化,增加新的功能。