一、rtos.c
/* * 只有延时服务的协作式的内核 * * 三个正在运行的主任务,都通过延时服务,主动放弃对CPU的控制权。 在时间中断中, * 对各个任务的的延时进行计时,如果某个任务的延时结束,将任务重新在就绪表中置 * 位。 最低级的系统任务TaskScheduler(),在三个主任务在放弃对CPU的控制权后开始 * 不断地进行调度。如果某个任务在就绪表中置位,通过调度,进入最高级别的任务中 * 继续运行。 * * 单片机:AT90CAN128 * 编译软件:WinAVR-20090313,AVR Studio 4.16 */ #include "rtos.h" unsigned char Stack[200]; register unsigned char OSRdyTbl asm("r2"); //任务运行就绪表 register unsigned char OSTaskRunningPrio asm("r3"); //正在运行的任务 #define OS_TASKS 3 //设定运行任务的数量 struct TaskCtrBlock //任务控制块 { unsigned int OSTaskStackTop; //保存任务的堆栈顶 unsigned int OSWaitTick; //任务延时时钟 } TCB[OS_TASKS+1]; //防止被编译器占用 register unsigned char tempR4 asm("r4"); register unsigned char tempR5 asm("r5"); register unsigned char tempR6 asm("r6"); register unsigned char tempR7 asm("r7"); register unsigned char tempR8 asm("r8"); register unsigned char tempR9 asm("r9"); register unsigned char tempR10 asm("r10"); register unsigned char tempR11 asm("r11"); register unsigned char tempR12 asm("r12"); register unsigned char tempR13 asm("r13"); register unsigned char tempR14 asm("r14"); register unsigned char tempR15 asm("r15"); register unsigned char tempR16 asm("r16"); register unsigned char tempR17 asm("r17"); //建立任务 void OSTaskCreate(void (*Task)(void),unsigned char *Stack,unsigned char TaskID) { unsigned char i; // *Stack--=(unsigned int)Task>>8; //将任务的地址高位压入堆栈, *Stack--=(unsigned int)Task; //将任务的地址低位压入堆栈, *Stack--=(unsigned int)Task>>8; *Stack--=0x00; //R1 __zero_reg__ *Stack--=0x00; //R0 __tmp_reg__ *Stack--=0x80; //SREG 在任务中,开启全局中断 for(i=0;i<14;i++) //在 avr-libc 中的 FAQ中的 What registers are used by the C compiler? *Stack--=i; //描述了寄存器的作用 TCB[TaskID].OSTaskStackTop=(unsigned int)Stack; //将人工堆栈的栈顶,保存到堆栈的数组中 OSRdyTbl|=0x01<<TaskID; //任务就绪表已经准备好 } //开始任务调度,从最低优先级的任务的开始 void OSStartTask() { OSTaskRunningPrio=OS_TASKS; SP=TCB[OS_TASKS].OSTaskStackTop+17; __asm__ __volatile__("reti \n\t"); //从中断中返回,并开中断 } //进行任务调度 void OSSched(void) { // 根据中断时保存寄存器的次序入栈,模拟一次中断后,入栈的情况 __asm__ __volatile__("PUSH __zero_reg__ \n\t"); //R1 __asm__ __volatile__("PUSH __tmp_reg__ \n\t"); //R0 __asm__ __volatile__("IN __tmp_reg__,__SREG__ \n\t"); //保存状态寄存器SREG __asm__ __volatile__("PUSH __tmp_reg__ \n\t"); __asm__ __volatile__("CLR __zero_reg__ \n\t"); //R0重新清零 __asm__ __volatile__("PUSH R18 \n\t"); __asm__ __volatile__("PUSH R19 \n\t"); __asm__ __volatile__("PUSH R20 \n\t"); __asm__ __volatile__("PUSH R21 \n\t"); __asm__ __volatile__("PUSH R22 \n\t"); __asm__ __volatile__("PUSH R23 \n\t"); __asm__ __volatile__("PUSH R24 \n\t"); __asm__ __volatile__("PUSH R25 \n\t"); __asm__ __volatile__("PUSH R26 \n\t"); __asm__ __volatile__("PUSH R27 \n\t"); __asm__ __volatile__("PUSH R30 \n\t"); __asm__ __volatile__("PUSH R31 \n\t"); __asm__ __volatile__("PUSH R28 \n\t"); //R28与R29用于建立在堆栈上的指针 __asm__ __volatile__("PUSH R29 \n\t"); //入栈完成 TCB[OSTaskRunningPrio].OSTaskStackTop=SP; //将正在运行的任务的堆栈底保存 unsigned char OSNextTaskID; //在现有堆栈上开设新的空间 for (OSNextTaskID = 0; //进行任务调度 OSNextTaskID < OS_TASKS && !(OSRdyTbl & (0x01<<OSNextTaskID)); OSNextTaskID++); OSTaskRunningPrio = OSNextTaskID ; cli(); //保护堆栈转换 SP=TCB[OSTaskRunningPrio].OSTaskStackTop; sei(); //根据中断时的出栈次序 __asm__ __volatile__("POP R29 \n\t"); __asm__ __volatile__("POP R28 \n\t"); __asm__ __volatile__("POP R31 \n\t"); __asm__ __volatile__("POP R30 \n\t"); __asm__ __volatile__("POP R27 \n\t"); __asm__ __volatile__("POP R26 \n\t"); __asm__ __volatile__("POP R25 \n\t"); __asm__ __volatile__("POP R24 \n\t"); __asm__ __volatile__("POP R23 \n\t"); __asm__ __volatile__("POP R22 \n\t"); __asm__ __volatile__("POP R21 \n\t"); __asm__ __volatile__("POP R20 \n\t"); __asm__ __volatile__("POP R19 \n\t"); __asm__ __volatile__("POP R18 \n\t"); __asm__ __volatile__("POP __tmp_reg__ \n\t"); //SERG 出栈并恢复 __asm__ __volatile__("OUT __SREG__,__tmp_reg__ \n\t"); // __asm__ __volatile__("POP __tmp_reg__ \n\t"); //R0 出栈 __asm__ __volatile__("POP __zero_reg__ \n\t"); //R1 出栈 //中断时出栈完成 } void OSTimeDly(unsigned int ticks) { if(ticks) //当延时有效 { OSRdyTbl &= ~(0x01<<OSTaskRunningPrio); TCB[OSTaskRunningPrio].OSWaitTick=ticks; OSSched(); //从新调度 } } void TCN0Init(void) // 计时器0 { TCCR0A = 0x00; //关定时器 0x05是定时器普通模式、1024分频 TCNT0 = 0x16; //初始值 (256-22)*0.08533333=19.9679999999ms TIMSK0 |= (1<<TOIE0); //中断允许 // TCCR0A |= (1<<WGM01) | (1<<CS02) | (1<<CS00); //启动,CTC模式,1024分频 ;加1<<WGM01不好用 TCCR0A |= (1<<CS02) | (1<<CS00); //启动,普通模式,1024分频 //12000000/1024=11718.75, 1/11718.75=85.33333us } SIGNAL(SIG_OVERFLOW0) { unsigned char i; for(i=0;i<OS_TASKS;i++) //任务时钟 { if(TCB[i].OSWaitTick) { TCB[i].OSWaitTick--; if(TCB[i].OSWaitTick==0) //当任务时钟到时,必须是由定时器减时的才行 { OSRdyTbl |= (0x01<<i); //使任务在就绪表中置位 } } } TCNT0=0x16; } void Task0() { while(1) { GREEN_OFF; YELLOW_ON; OSTimeDly(20); } } void Task1() { while(1) { GREEN_ON; YELLOW_OFF; OSTimeDly(40); } } void Task2() { while(1) { GREEN_OFF; YELLOW_OFF; OSTimeDly(80); } } void TaskScheduler() { while(1) { OSSched();//反复进行调度 } } int main(void) { TCN0Init(); LedsInitial(); OSRdyTbl=0; OSTaskRunningPrio=0; OSTaskCreate(Task0,&Stack[49],0); OSTaskCreate(Task1,&Stack[99],1); OSTaskCreate(Task2,&Stack[149],2); OSTaskCreate(TaskScheduler,&Stack[199],OS_TASKS); OSStartTask(); }
二、rtos.h
#ifndef __RTOS_H__ #define __RTOS_H__ #include "includes.h" #include "config.h" #endif
三、config.c
#include "config.h" void LedsInitial(void) { DDRG |= (1<<DDG3)|(1<<DDG0); //output // GREEN_ON; // YELLOW_ON; GREEN_OFF; YELLOW_OFF; }
四、config.h
#ifndef __CONFIG_H__ #define __CONFIG_H__ #include "includes.h" #define GREEN _BV(PG3) #define YELLOW _BV(PG0) /* * LED共阳接+5V * 负极接单片机IO口 */ #define GREEN_ON PORTG &= ~(GREEN) //GREEN是低电平 #define GREEN_OFF PORTG |= (GREEN) //GREEN是高电平 #define YELLOW_ON PORTG &= ~(YELLOW) #define YELLOW_OFF PORTG |= (YELLOW) extern void LedsInitial(void); #endif
五、includes.h
#ifndef __INCLUDES_H__ #define __INCLUDES_H__ #include <alloca.h>// Allocate space in the stack #include <assert.h>// Diagnostics #include <ctype.h>// Character Operations #include <errno.h>// System Errors #include <inttypes.h>// Integer Type conversions #include <math.h>// Mathematics #include <setjmp.h>// Non-local goto #include <stdint.h>// Standard Integer Types #include <stdio.h>// Standard IO facilities #include <stdlib.h>// General utilities #include <string.h>// Strings // #include <avr/boot.h>// Bootloader Support Utilities #include <avr/eeprom.h>// EEPROM handling #include <avr/fuse.h>// Fuse Support #include <avr/interrupt.h>// Interrupts #include <avr/io.h>// AVR device-specific IO definitions #include <avr/lock.h>// Lockbit Support #include <avr/pgmspace.h>// Program Space Utilities #include <avr/power.h>// Power Reduction Management #include <avr/sleep.h>// Power Management and Sleep Modes #include <avr/wdt.h>// Watchdog timer handling #include <util/atomic.h>// Atomically and Non-Atomically Executed Code Blocks #include <util/crc16.h>// CRC Computations #include <util/delay.h>// Convenience functions for busy-wait delay loops #include <util/delay_basic.h>// Basic busy-wait delay loops #include <util/parity.h>// Parity bit generation #include <util/setbaud.h>// Helper macros for baud rate calculations #include <util/twi.h>// TWI bit mask definitions #include <compat/deprecated.h>// Deprecated items #include <compat/ina90.h>// Compatibility with IAR EWB 3.x #endif