Probability Review

1.  Sample space Ω = "All possible out comes".

    Each outcome i in Ω , has a probability P(i) >= 0;

    Constraint : Sum(i in Ω) {P(i)} = 1.

 

2.  Choosing a random pivot in outer QuickSort Call:

    Ω ={1, 2, ... , n } and P(i) = 1/n for all i in Ω.

 

3.  An event is a subset S of Ω.

     The probability of an event S is Sum(i in S) { P(i) }.

 

4.  The event "the chosen pivot gives a 25-75 split of better" = {(n/4 + 1) th smallest element, ..., (3n/4)th smallest element} , so its Probability = 1/2

 

5.  A random variable X is a real-valued function defined on Ω. (i.e. size of subarray passed to 1st recursive call)

 

6.  Let X be a random variable, the expectation E[X] of X = average value of X = Sum(i in Ω){ X(i) P(i)}

 

7.  The expectation of the size of the subarray passed to the first recursive call in QuickSort is :

    1/n X 0 + 1/n X 1 + 1/n X 2 ... + 1/n X (n-1) = (n-1)/2

 

8.  Let X1, X2 , ... , Xn be random variable defined on Ω. Then :

        E[Sum(Xj)] = Sum(E[Xj])

 

9.  Proof of Linearity of Expectation:

        Sum(j = 0~n) { E(Xj) } = Sum(j=0~n) { Sum(i in Ω) {Xj(i) P (i) } }

                                          = Sum(i in Ω) { Sum(j=0~n) {Xj(i) P (i) } }

                                          = Sum(i in Ω) { P (i)  Sum(j=0~n) {Xj(i)} }

                                          = E( Sum(j=0~n) {Xj} )


Probability Review_第1张图片
 

10.  Problem: need to assign n jobs to n servers.

       Proposed Solution: assign each job to a random server.

       Question: what is expected number of jobs assigned to a server.

       Sample Space = All n^n assignments of jobs to servers ,each equally likely.

        Let Y = total number of jobs assinged to the 1st server.

        Let Xj = 1 if jth job assined to 1st server, 0 otherwise.

        Y = Sum (j=1~n) {Xj} , So E[Y] = Sum (j=1~n) {E[Xj]} = Sum(j=1~n){P[Xj=1]} = n X 1/n = 1.

 

11.  Let X, Y be events on Ω,  P(X|Y) = P(X and Y) / P(Y)  ( the probability of X given Y ---- Conditional Probability)

 

12.  Events X and Y are independent iif P(X and Y) = P(X)P(Y)

       P(X and Y) = P(X)P(Y) <==> P(X|Y) = P(X) <==> P(Y|X) = P(Y)

 

13.  Random variable X and Y defined on Ω, X and Y are independent iff for all a, b , event "X=a" and event "Y=b" are independent.     <==>  P(X=a and Y=b) = P(X=a) P(Y=b)

 

14.  if A, B are independent , then E[A B] = E[A] E[B] , proof :

      E[A B] = Sum ( for all a, b) { a b P(X=a and Y=b)} = Sum ( for all a, b ) { a b P(X=a) P(Y=b) }

                                                                                = Sum ( for all a ) {a P(X=a)} Sum (for all b) {b P(Y=b)}

                                                                                = E[X] E[Y]

 

15.  Let X1, X2 is randomly valued 0 or 1 , and X3= X1 xor X2.

        So X1 and X3 are independent. But X1X3 and X2 are not independent : E[X1X2X3] <> E[X1X2]E[X3]

 

你可能感兴趣的:(Algorithm,Probability)