- IK分词
初心myp
实现简单的分词功能,智能化分词添加依赖配置:4.10.4org.apache.lucenelucene-core${lucene.version}org.apache.lucenelucene-analyzers-common${lucene.version}org.apache.lucenelucene-queryparser${lucene.version}org.apache.lucenel
- 搜索引擎技术选型
dusty_giser
近期,业主对POI检索提出了一些想法,针对之前简单的WordSegment分词和模糊匹配搜索需要进行一些更为符合业主需求的调整。于是这几天对搜索引擎进行了一些技术选型;一、ApacheLucene Lucene是一个开源的高性能、可扩展的全文检索引擎工具包,但不是一个完整的全文检索引擎,而是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎。所以它是一套信息检索工具包,可以说是当今最先进
- mac m1使用docker 安装es kibana ik分词器
Maosmallming
dockerelasticsearchmacos
0.安装docker可参考以下文章http://t.csdnimg.cn/fMXu61.拉取elasticsearch镜像资源,本人下载的是8.6.2版本dockerpullelasticsearch:8.6.22.在本机中提前创建好yml文件elasticsearch.ymlhttp:host:0.0.0.0xpack.security.enabled:falsexpack.security.e
- docker安装ES、kibana和IK分词器
拉取镜像dockerpullelasticsearch:7.4.2dockerpullkibana:7.4.2创建存储数据的目录mkdir-p/home/lab1018/docker_volume/elasticsearch/configmkdir-p/home/lab1018/docker_volume/elasticsearch/datamkdir-p/home/lab1018/docker_
- Mac 使用Docker安装Elasticsearch、Kibana 、ik分词器、head
风中带血
macosdockerelasticsearch
安装ElasticSearch通过docker安装esdockerpullelasticsearch:7.8.1在本地创建elasticsearch.yml文件mkdir/Users/ky/Documents/learn/es/elasticsearch.yml编辑yml文件内容http:host:0.0.0.0xpack.security.enabled:falsexpack.security.
- 2024年最新MAC M1使用docker 安装es kibana ik分词器,被面试官问的大数据开发-Framework难倒了
2401_84164503
程序员大数据macosdocker
网上学习资料一大堆,但如果学到的知识不成体系,遇到问题时只是浅尝辄止,不再深入研究,那么很难做到真正的技术提升。需要这份系统化资料的朋友,可以戳这里获取一个人可以走的很快,但一群人才能走的更远!不论你是正从事IT行业的老鸟或是对IT行业感兴趣的新人,都欢迎加入我们的的圈子(技术交流、学习资源、职场吐槽、大厂内推、面试辅导),让我们一起学习成长!我的路径是/Users/jim/elasticsear
- docker安装 Elasticsearch、Kibana、IK 分词器
kong@react
dockerelasticsearchjenkins
Elasticsearch1.拉去镜像dockerpullelasticsearch:8.12.2dockerpullkibana:8.12.22.创建挂载目录mkdir/root/elasticsearch3.不挂载启动dockerrun-d\--restart=always\--namefusion_elasticsearch\--networkfusion_network\-p9200:92
- elasticsearch-ik分词器
菁菁兰花月
elasticsearch搜索引擎大数据
这里用的分词器版本是elasticsearch-analysis-ik-7.16.1.zip,和elasticsearch是相同的版本,这样不容易出错。每个节点的elasticsearch中都要安装elasticsearch-analysis-ik。安装过程1.linux安装zip解压器yum-yinstallunzip2.在原来的elasticsearch安装目录中的plugins目录下创建一个
- Elasticsearch安装、Ik分词器安装、head管理界面安装(Windows && Linux)
JasonHome
ElasticSearchElassticsearchesikhead分词器
Elasticsearch安装与使用(Windows&&Linux)官方下载地址:https://www.elastic.co/cn/downloads/elasticsearchhead插件安装(es可视化界面)github地址:https://github.com/mobz/elasticsearch-headIk分词器安装github地址:https://github.com/medcl/e
- Elasticsearch安装中文分词器elasticsearch-analysis-ik 大数据
JieLun_C
大数据elasticsearch中文分词
Elasticsearch安装中文分词器elasticsearch-analysis-ik大数据近年来,随着大数据技术的不断发展,搜索引擎的应用需求也日益增加。而对于中文搜索引擎而言,一个好用的中文分词器是至关重要的。在Elasticsearch中,我们可以使用elasticsearch-analysis-ik插件来实现中文分词功能。本文将为大家详细介绍在安装和配置elasticsearch-an
- 使用Python操作ElasticSearch
完美代码
elasticsearch搜索引擎pythonPython
使用Python操作ElasticSearchElasticsearch是一个基于Lucene的搜索引擎,它提供了一个可扩展的多用户全文搜索引擎。使用Python操作ElasticSearch可以非常方便地进行索引和搜索。创建索引在操作ElasticSearch之前,首先需要创建一个索引。下面是一个简单的Python代码示例,用于创建一个名为“my_index”的索引,并定义了一个类型“my_ty
- 【Lucene】lucene的searcher.search查询机制
risc123456
lucene
lucene查询的时候也是先评分排序,最后才获取文档甚至获取文档都不是必须的?是的,你的理解完全正确。1.Lucene查询流程=先评分&排序,后可选地取回文档-IndexSearcher.search(...)在内部先创建`Weight`、`Scorer`,再交给Collector遍历倒排表。-Collector(如TopScoreDocCollector)一边遍历一边实时计算score并维护一个
- 【Lucene】leafreadercontext逻辑段与segment物理磁盘段的关系
risc123456
Elasticsearchlucene
在Lucene中,“叶子段”(LeafReaderContext)和“segment”(物理段)在Lucene语境下,LeafReaderContext≈segment的运行时只读视图。概念所在层次含义是否一一对应segment物理存储层Lucene索引在磁盘上被拆分为多个段(每个段一个`_X`命名的文件集)。每个segment是一个完整的倒排索引子集,包含倒排表、存储字段、DocValue等。✅
- TwoPhaseIterator 两阶段验证
risc123456
lucene
下面给出可直接拷贝运行的Lucene8.5.0示例,演示TwoPhaseIterator两阶段验证的完整流程。场景:使用`PhraseQuery`(短语查询),它天然携带`TwoPhaseIterator`,第一阶段通过倒排表拿到“候选文档”,第二阶段验证词间距与顺序。---1.依赖(Maven)```xmlorg.apache.lucenelucene-core8.5.0org.apache.l
- lucene 9.10向量检索基本用法
成长的小牛233
lucene全文检索
Lucene9.10中的KnnFloatVectorQuery是用来执行最近邻(k-NearestNeighbors,kNN)搜索的查询类,它可以在一个字段中搜索与目标向量最相似的k个向量。以下是KnnFloatVectorQuery的基本用法和代码示例。1.索引向量字段首先,你需要一个包含向量字段的索引。你可以使用KnnFloatVectorField来添加向量到文档中。importorg.ap
- 怎么安装自定义分词器
思静鱼
#elasticsearches
安装自定义分词器的完整步骤在Elasticsearch中安装自定义分词器,通常需要修改索引配置或开发插件。以下是详细方法:一、基于配置实现自定义分词器(无需插件)适用于通过组合Elasticsearch内置的CharacterFilters、Tokenizers和TokenFilters实现的分词器。1.定义分词规则在创建索引时,通过settings.analysis配置自定义分词器:PUT/my
- Elasticsearch
MacJerry
elasticsearch大数据搜索引擎
学习目标[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-BGW4RqWM-1635414988340)(es.assets/Snipaste_2020-07-06_13-03-45.png)]Elasticsearch简介与安装什么是Elasticsearch?ElasticSearch是一个基于Lucene的搜索服务器。它提供了一个分布式多用户能力的全文搜索引擎,基
- Elasticsearch:基本概念、索引结构与优缺点分析
Leaton Lee
elasticsearch大数据搜索引擎
一、Elasticsearch基本概念Elasticsearch是一个基于Lucene构建的开源、分布式、RESTful搜索引擎,专为云计算环境设计,能够实现近乎实时的数据搜索和分析功能。核心概念解析文档(Document)Elasticsearch中的基本数据单元,使用JSON格式表示每个文档有唯一ID和类型示例:一条产品信息、一篇博客文章或一个客户记录索引(Index)文档的集合,类似于关系数
- Elasticsearch检索高亮不正确,不精确问题
问题场景:搜索“a”高亮"A8A",,,,,分词器:IK分词器确认分词结果:下图说明已经正确分词!确认高亮效果:换一种高亮器查询效果:对应java代码:总结:当高亮显示不精确的时候,要从以下两方面找问题:1.分词器是否分词准确2.高亮器是否满足你的要求,不满足换一种高亮器查看效果我之前原默认的高亮器(plain)不能满足要求,后来使用unified高亮器解决了高亮不精确的问题。
- docker安装Elasticsearch
Uluoyu
dockerelasticsearch
1.安装版本Elasticsearch(8.18.3)kibana(8.18.3)ik分词器(8.18.3)2.创建网络,让ES与Kibana容器互联dockernetworkcreatees-net3.加载镜像dockerpulldocker.elastic.co/elasticsearch/elasticsearch:8.18.3sudodockerpulldocker.elastic.co/
- Qwen3 Embedding 结构-加载-训练 看透模型设计哲学
看透一个顶级AI句向量模型的设计秘密,从文件结构到加载原理,再到其背后的训练哲学。1Qwen3-Embedding模型结构拆解说明:目录包含了运行一个基于Transformer的句向量模型所需的所有组件文件类别核心文件作用核心模型model.safetensors,config.jsonmodel.safetensors存储了模型所有训练好的权重分词器tokenizer.json,vocab.js
- 从0实现llama3
讨厌编程但喜欢LLM的学院派
人工智能python开发语言深度学习机器学习pytorch
分享一下从0实现llama的过程流程如下:word-->embeddinglayer-->n*decoderlayer-->finallinearlayer-->output分词器在embedding之前,需要进行分词,将句子分成单词。llama3采用了基于BPE算法的分词器。这个链接实现了一个非常简洁的BPE分词器简易分词器实现BPE分词器(选看)1)训练tokenizer词汇表并合并给定文本,
- 手把手从零打造 Llama3:解锁下一代预训练模型
会飞的Anthony
信息系统人工智能AIGC自然语言处理人工智能llama3AIGC
引言Llama3相较于Llama2,不仅在模型架构上做了显著优化,尤其是全局查询注意力机制(GQA)的引入,使得模型在大规模数据处理上表现更加出色。同时,Llama3采用了与GPT一致的tiktoken分词器,大幅提升了分词效率。本篇文章将带你从头构建Llama3预训练流程,深入了解其关键细节和实现方式,让你掌握这一下一代模型的核心技术。1.启动训练脚本在这一步中,我们将实现Llama3的预训练框
- ES 和 lucene 的区别是什么?
晚夜微雨问海棠呀
elasticsearchlucene大数据
Elasticsearch(ES)和Lucene都是用于全文搜索和分析的工具,但它们在功能和使用场景上有一些重要的区别:基础与角色:Lucene是一个开源的信息检索软件库,提供了一个高性能、全功能的文本搜索引擎。它是许多搜索应用的核心,包括Elasticsearch。Elasticsearch是一个分布式搜索和分析引擎,构建在Lucene之上。它不仅提供了Lucene的所有功能,还增加了分布式计算
- Lucence 和 Elasticsearch 的区别?
码出财富
elasticsearch大数据搜索引擎
Lucene和Elasticsearch都是在信息检索和文本处理领域中广泛使用的工具,它们的主要区别如下:概念和定位Lucene:是一个基于Java的全文检索库,它提供了一套强大的底层索引和搜索功能的API。Lucene更像是一个工具包,开发人员可以基于它来构建自己的搜索应用程序,需要深入了解搜索的底层原理和算法,对开发者的技术要求较高。Elasticsearch:是一个基于Lucene的分布式搜
- 【机器学习&深度学习】模型微调的基本概念与流程
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是模型微调(Fine-tuning)?二、预训练vs微调:什么关系?三、微调的基本流程(以BERT为例)1️⃣准备数据2️⃣加载预训练模型和分词器3️⃣数据编码与加载4️⃣定义优化器5️⃣开始训练6️⃣评估与保存模型四、是否要冻结BERT层?五、完整训练示例代码5.1环境依赖5.2执行代码总结:微调的优势前言在自然语言处理(NLP)快速发展的今天,预训练模型如BERT成为了众多任务
- 向量数据库milvus中文全文检索取不到数据的处理办法
--勇
数据库milvus全文检索
检查中文分词配置Milvus2.5+支持原生中文全文检索,但需显式配置中文分词器:创建集合时指定分词器类型为chinesepythonschema.add_field(field_name="text",datatype=DataType.VARCHAR,max_length=65535,enable_analyzer=True,analyzer_params={"type":"chinese"}
- 【云原生】Docker 部署 Elasticsearch 9 操作详解
逆风飞翔的小叔
运维Docker部署es9Docker部署esDocker搭建es9Elasticsearch9Docker搭建es
目录一、前言二、Elasticsearch9新特性介绍2.1基于Lucene10重大升级2.2BetterBinaryQuantization(BBQ)2.3ElasticDistributionsofOpenTelemetry(EDOT)2.4LLM可观测性2.5攻击发现与自动导入2.6ES|QL增强2.7语义检索三、基于Docker部署Elasticsearch93.1Elasticsearc
- 深度解析Lucene IndexWriter 性能优化
微笑听雨。
java进阶教程luceneindexWriter全文检索性能调优内存缓冲
深度解析LuceneIndexWriter性能优化目标:在大规模写入、频繁更新的场景下,既保持吞吐量,又兼顾搜索实时性与系统稳定性。关键调优点内存缓冲:将RAMBufferSizeMB提升至128–1024MB,减少flush次数;必要时配合maxBufferedDocs。合并策略:使用TieredMergePolicy,典型参数为maxMergeAtOnce4–8、segmentsPerTier
- Python 调用大模型:解锁人工智能的无限可能
CarlowZJ
AI应用落地+Pythonpython人工智能
目录一、大模型的概念与特点(一)大模型的定义(二)大模型的特点(三)大模型的原理(四)大模型的发展历史二、Python调用大模型的实现方法(一)使用OpenAIAPI设置API密钥定义提示文本调用OpenAIAPI输出生成的文本加载预训练模型和分词器2.使用HuggingFaceTransformers库三、Python调用大模型的流程图四、Python调用大模型注意事项的1.数据隐私与安全2.成
- rust的指针作为函数返回值是直接传递,还是先销毁后创建?
wudixiaotie
返回值
这是我自己想到的问题,结果去知呼提问,还没等别人回答, 我自己就想到方法实验了。。
fn main() {
let mut a = 34;
println!("a's addr:{:p}", &a);
let p = &mut a;
println!("p's addr:{:p}", &a
- java编程思想 -- 数据的初始化
百合不是茶
java数据的初始化
1.使用构造器确保数据初始化
/*
*在ReckInitDemo类中创建Reck的对象
*/
public class ReckInitDemo {
public static void main(String[] args) {
//创建Reck对象
new Reck();
}
}
- [航天与宇宙]为什么发射和回收航天器有档期
comsci
地球的大气层中有一个时空屏蔽层,这个层次会不定时的出现,如果该时空屏蔽层出现,那么将导致外层空间进入的任何物体被摧毁,而从地面发射到太空的飞船也将被摧毁...
所以,航天发射和飞船回收都需要等待这个时空屏蔽层消失之后,再进行
&
- linux下批量替换文件内容
商人shang
linux替换
1、网络上现成的资料
格式: sed -i "s/查找字段/替换字段/g" `grep 查找字段 -rl 路径`
linux sed 批量替换多个文件中的字符串
sed -i "s/oldstring/newstring/g" `grep oldstring -rl yourdir`
例如:替换/home下所有文件中的www.admi
- 网页在线天气预报
oloz
天气预报
网页在线调用天气预报
<%@ page language="java" contentType="text/html; charset=utf-8"
pageEncoding="utf-8"%>
<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transit
- SpringMVC和Struts2比较
杨白白
springMVC
1. 入口
spring mvc的入口是servlet,而struts2是filter(这里要指出,filter和servlet是不同的。以前认为filter是servlet的一种特殊),这样就导致了二者的机制不同,这里就牵涉到servlet和filter的区别了。
参见:http://blog.csdn.net/zs15932616453/article/details/8832343
2
- refuse copy, lazy girl!
小桔子
copy
妹妹坐船头啊啊啊啊!都打算一点点琢磨呢。文字编辑也写了基本功能了。。今天查资料,结果查到了人家写得完完整整的。我清楚的认识到:
1.那是我自己觉得写不出的高度
2.如果直接拿来用,很快就能解决问题
3.然后就是抄咩~~
4.肿么可以这样子,都不想写了今儿个,留着作参考吧!拒绝大抄特抄,慢慢一点点写!
- apache与php整合
aichenglong
php apache web
一 apache web服务器
1 apeche web服务器的安装
1)下载Apache web服务器
2)配置域名(如果需要使用要在DNS上注册)
3)测试安装访问http://localhost/验证是否安装成功
2 apache管理
1)service.msc进行图形化管理
2)命令管理,配
- Maven常用内置变量
AILIKES
maven
Built-in properties
${basedir} represents the directory containing pom.xml
${version} equivalent to ${project.version} (deprecated: ${pom.version})
Pom/Project properties
Al
- java的类和对象
百合不是茶
JAVA面向对象 类 对象
java中的类:
java是面向对象的语言,解决问题的核心就是将问题看成是一个类,使用类来解决
java使用 class 类名 来创建类 ,在Java中类名要求和构造方法,Java的文件名是一样的
创建一个A类:
class A{
}
java中的类:将某两个事物有联系的属性包装在一个类中,再通
- JS控制页面输入框为只读
bijian1013
JavaScript
在WEB应用开发当中,增、删除、改、查功能必不可少,为了减少以后维护的工作量,我们一般都只做一份页面,通过传入的参数控制其是新增、修改或者查看。而修改时需将待修改的信息从后台取到并显示出来,实际上就是查看的过程,唯一的区别是修改时,页面上所有的信息能修改,而查看页面上的信息不能修改。因此完全可以将其合并,但通过前端JS将查看页面的所有信息控制为只读,在信息量非常大时,就比较麻烦。
- AngularJS与服务器交互
bijian1013
JavaScriptAngularJS$http
对于AJAX应用(使用XMLHttpRequests)来说,向服务器发起请求的传统方式是:获取一个XMLHttpRequest对象的引用、发起请求、读取响应、检查状态码,最后处理服务端的响应。整个过程示例如下:
var xmlhttp = new XMLHttpRequest();
xmlhttp.onreadystatechange
- [Maven学习笔记八]Maven常用插件应用
bit1129
maven
常用插件及其用法位于:http://maven.apache.org/plugins/
1. Jetty server plugin
2. Dependency copy plugin
3. Surefire Test plugin
4. Uber jar plugin
1. Jetty Pl
- 【Hive六】Hive用户自定义函数(UDF)
bit1129
自定义函数
1. 什么是Hive UDF
Hive是基于Hadoop中的MapReduce,提供HQL查询的数据仓库。Hive是一个很开放的系统,很多内容都支持用户定制,包括:
文件格式:Text File,Sequence File
内存中的数据格式: Java Integer/String, Hadoop IntWritable/Text
用户提供的 map/reduce 脚本:不管什么
- 杀掉nginx进程后丢失nginx.pid,如何重新启动nginx
ronin47
nginx 重启 pid丢失
nginx进程被意外关闭,使用nginx -s reload重启时报如下错误:nginx: [error] open() “/var/run/nginx.pid” failed (2: No such file or directory)这是因为nginx进程被杀死后pid丢失了,下一次再开启nginx -s reload时无法启动解决办法:nginx -s reload 只是用来告诉运行中的ng
- UI设计中我们为什么需要设计动效
brotherlamp
UIui教程ui视频ui资料ui自学
随着国际大品牌苹果和谷歌的引领,最近越来越多的国内公司开始关注动效设计了,越来越多的团队已经意识到动效在产品用户体验中的重要性了,更多的UI设计师们也开始投身动效设计领域。
但是说到底,我们到底为什么需要动效设计?或者说我们到底需要什么样的动效?做动效设计也有段时间了,于是尝试用一些案例,从产品本身出发来说说我所思考的动效设计。
一、加强体验舒适度
嗯,就是让用户更加爽更加爽的用你的产品。
- Spring中JdbcDaoSupport的DataSource注入问题
bylijinnan
javaspring
参考以下两篇文章:
http://www.mkyong.com/spring/spring-jdbctemplate-jdbcdaosupport-examples/
http://stackoverflow.com/questions/4762229/spring-ldap-invoking-setter-methods-in-beans-configuration
Sprin
- 数据库连接池的工作原理
chicony
数据库连接池
随着信息技术的高速发展与广泛应用,数据库技术在信息技术领域中的位置越来越重要,尤其是网络应用和电子商务的迅速发展,都需要数据库技术支持动 态Web站点的运行,而传统的开发模式是:首先在主程序(如Servlet、Beans)中建立数据库连接;然后进行SQL操作,对数据库中的对象进行查 询、修改和删除等操作;最后断开数据库连接。使用这种开发模式,对
- java 关键字
CrazyMizzz
java
关键字是事先定义的,有特别意义的标识符,有时又叫保留字。对于保留字,用户只能按照系统规定的方式使用,不能自行定义。
Java中的关键字按功能主要可以分为以下几类:
(1)访问修饰符
public,private,protected
p
- Hive中的排序语法
daizj
排序hiveorder byDISTRIBUTE BYsort by
Hive中的排序语法 2014.06.22 ORDER BY
hive中的ORDER BY语句和关系数据库中的sql语法相似。他会对查询结果做全局排序,这意味着所有的数据会传送到一个Reduce任务上,这样会导致在大数量的情况下,花费大量时间。
与数据库中 ORDER BY 的区别在于在hive.mapred.mode = strict模式下,必须指定 limit 否则执行会报错。
- 单态设计模式
dcj3sjt126com
设计模式
单例模式(Singleton)用于为一个类生成一个唯一的对象。最常用的地方是数据库连接。 使用单例模式生成一个对象后,该对象可以被其它众多对象所使用。
<?phpclass Example{ // 保存类实例在此属性中 private static&
- svn locked
dcj3sjt126com
Lock
post-commit hook failed (exit code 1) with output:
svn: E155004: Working copy 'D:\xx\xxx' locked
svn: E200031: sqlite: attempt to write a readonly database
svn: E200031: sqlite: attempt to write a
- ARM寄存器学习
e200702084
数据结构C++cC#F#
无论是学习哪一种处理器,首先需要明确的就是这种处理器的寄存器以及工作模式。
ARM有37个寄存器,其中31个通用寄存器,6个状态寄存器。
1、不分组寄存器(R0-R7)
不分组也就是说说,在所有的处理器模式下指的都时同一物理寄存器。在异常中断造成处理器模式切换时,由于不同的处理器模式使用一个名字相同的物理寄存器,就是
- 常用编码资料
gengzg
编码
List<UserInfo> list=GetUserS.GetUserList(11);
String json=JSON.toJSONString(list);
HashMap<Object,Object> hs=new HashMap<Object, Object>();
for(int i=0;i<10;i++)
{
- 进程 vs. 线程
hongtoushizi
线程linux进程
我们介绍了多进程和多线程,这是实现多任务最常用的两种方式。现在,我们来讨论一下这两种方式的优缺点。
首先,要实现多任务,通常我们会设计Master-Worker模式,Master负责分配任务,Worker负责执行任务,因此,多任务环境下,通常是一个Master,多个Worker。
如果用多进程实现Master-Worker,主进程就是Master,其他进程就是Worker。
如果用多线程实现
- Linux定时Job:crontab -e 与 /etc/crontab 的区别
Josh_Persistence
linuxcrontab
一、linux中的crotab中的指定的时间只有5个部分:* * * * *
分别表示:分钟,小时,日,月,星期,具体说来:
第一段 代表分钟 0—59
第二段 代表小时 0—23
第三段 代表日期 1—31
第四段 代表月份 1—12
第五段 代表星期几,0代表星期日 0—6
如:
*/1 * * * * 每分钟执行一次。
*
- KMP算法详解
hm4123660
数据结构C++算法字符串KMP
字符串模式匹配我们相信大家都有遇过,然而我们也习惯用简单匹配法(即Brute-Force算法),其基本思路就是一个个逐一对比下去,这也是我们大家熟知的方法,然而这种算法的效率并不高,但利于理解。
假设主串s="ababcabcacbab",模式串为t="
- 枚举类型的单例模式
zhb8015
单例模式
E.编写一个包含单个元素的枚举类型[极推荐]。代码如下:
public enum MaYun {himself; //定义一个枚举的元素,就代表MaYun的一个实例private String anotherField;MaYun() {//MaYun诞生要做的事情//这个方法也可以去掉。将构造时候需要做的事情放在instance赋值的时候:/** himself = MaYun() {*
- Kafka+Storm+HDFS
ssydxa219
storm
cd /myhome/usr/stormbin/storm nimbus &bin/storm supervisor &bin/storm ui &Kafka+Storm+HDFS整合实践kafka_2.9.2-0.8.1.1.tgzapache-storm-0.9.2-incubating.tar.gzKafka安装配置我们使用3台机器搭建Kafk
- Java获取本地服务器的IP
中华好儿孙
javaWeb获取服务器ip地址
System.out.println("getRequestURL:"+request.getRequestURL());
System.out.println("getLocalAddr:"+request.getLocalAddr());
System.out.println("getLocalPort:&quo