- x86-64汇编语言训练程序与实战
十除以十等于一
本文还有配套的精品资源,点击获取简介:汇编语言是一种低级语言,与机器代码紧密相关,特别适用于编写系统级代码及性能要求高的应用。nasm编译器是针对x86和x86-64架构的汇编语言编译器,支持多种语法风格和指令集。项目Euler提供数学和计算机科学问题,鼓励编程技巧应用,前100个问题的答案可共享。x86-64架构扩展了寄存器数量并引入新指令,提升了数据处理效率。学习汇编语言能够深入理解计算机底层
- (二)SAP Group Reporting (GR) 核心子模块功能及数据流向架构解析
数据如何从子公司流转到合并报表的全过程,即数据采集→合并引擎→报表输出,特别是HANA内存计算如何优化传统ETL瓶颈。SAPGroupReporting(GR)核心模块功能及数据流向的架构解析,涵盖核心组件、数据处理流程和关键集成点,适用于S/4HANA1809+版本:一、核心功能模块概览模块功能关键事务码/FioriApp数据采集(DataCollection)整合子公司财务数据(SAP/非SA
- 力扣热题100-------54. 螺旋矩阵
海航Java之路
力扣leetcode矩阵java
给你一个m行n列的矩阵matrix,请按照顺时针螺旋顺序,返回矩阵中的所有元素。示例1:输入:matrix=[[1,2,3],[4,5,6],[7,8,9]]输出:[1,2,3,6,9,8,7,4,5]示例2:输入:matrix=[[1,2,3,4],[5,6,7,8],[9,10,11,12]]输出:[1,2,3,4,8,12,11,10,9,5,6,7]提示:m==matrix.lengthn
- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- 48. 旋转图像 - 力扣(LeetCode)
Fiee-77
#数组leetcode算法python数据结构数组
题目:给定一个n×n的二维矩阵matrix表示一个图像。请你将图像顺时针旋转90度。你必须在原地旋转图像,这意味着你需要直接修改输入的二维矩阵。请不要使用另一个矩阵来旋转图像。示例1:输入:matrix=[[1,2,3],[4,5,6],[7,8,9]]输出:[[7,4,1],[8,5,2],[9,6,3]]示例2:输入:matrix=[[5,1,9,11],[2,4,8,10],[13,3,6,
- 深入解析JVM工作原理:从字节码到机器指令的全过程
一、JVM概述Java虚拟机(JVM)是Java平台的核心组件,它实现了Java"一次编写,到处运行"的理念。JVM是一个抽象的计算机器,它有自己的指令集和运行时内存管理机制。JVM的主要职责:加载:读取.class文件并验证其正确性存储:管理内存分配和垃圾回收执行:解释或编译字节码为机器指令安全:提供沙箱环境限制恶意代码二、JVM架构详解JVM由三个主要子系统组成:1.类加载子系统类加载过程分为
- ARM 和 AMD 架构的区别
m0_69576880
arm开发windows架构
ARM架构和AMD架构是两种不同的计算机处理器架构,它们有以下几个主要区别:设计出发点、兼容性、性能特点、市场定价。设计出发点:①ARM构架:ARM架构最初是为嵌入式系统设计的,旨在提供低功耗和高效能的解决方案。它主要应用于移动设备、嵌入式系统和物联网设备②AMD架构:AMD架构是基于x86架构的扩展,旨在提供与Intel架构兼容的处理器。它主要用于台式机、服务器和工作站等计算机系统。兼容性:AR
- 关于流媒体播放器EasyPlayer和EasyPlayerPro的介绍以及其区别
EasyDarwin
EasyDarwin音视频ffmpeg人工智能大数据ar
EasyPlayer是一款流媒体播放器系列项目,它支持多种流媒体协议的播放,包括但不限于RTSP、RTMP、HTTP、HLS、UDP、RTP、File等。除此之外,EasyPlayer还支持本地文件播放和多种功能特性,包括本地抓拍、本地录像、播放旋转、多屏播放、倍数播放等。EasyPlayer核心基于ffmpeg,稳定、高效、可靠、可控。随着多年的不断发展和迭代,EasyPlayer基于成功的实践
- JVM 内存模型深度解析:原子性、可见性与有序性的实现
练习时长两年半的程序员小胡
JVM深度剖析:从面试考点到生产实践jvmjava内存模型
在了解了JVM的基础架构和类加载机制后,我们需要进一步探索Java程序在多线程环境下的内存交互规则。JVM内存模型(JavaMemoryModel,JMM)定义了线程和主内存之间的抽象关系,它通过规范共享变量的访问方式,解决了多线程并发时的数据一致性问题。本文将从内存模型的核心目标出发,详解原子性、可见性、有序性的实现机制,以及volatile、synchronized等关键字在其中的作用。一、J
- 力扣面试题07 - 旋转矩阵
茶猫_
leetcode矩阵算法c语言
题目:给你一幅由N×N矩阵表示的图像,其中每个像素的大小为4字节。请你设计一种算法,将图像旋转90度。不占用额外内存空间能否做到?示例1:给定matrix=[[1,2,3],[4,5,6],[7,8,9]],原地旋转输入矩阵,使其变为:[[7,4,1],[8,5,2],[9,6,3]]示例2:给定matrix=[[5,1,9,11],[2,4,8,10],[13,3,6,7],[15,14,12,
- 在线人数统计业务设计(场景八股文)
业务问题在当经的网站中,在线人数的实时统计已经是一个必不可少的模块了,并且该统计功能最好能够按不同的时间间隔做的统计,现在需要你设计一个在线人数统计的模块,你应该怎么进行设计的呢?背景一个网校下会有多个学员。目前平台大概有十个,平台对应的网校大概五十几个,平均一个网校会有5w个用户,预计总人数为200w,最该学员的在线人数在10w左右。设计思路最开始的时候,想到的就是使用mysql直接实现,但是明
- Aop +反射 实现方法版本动态切换
需求分析在做技术选型的时候一直存在着两个声音,mongo作为数据库比较mysql好,mysql做为该数据比mongo好。当然不同数据库都有有着自己的优势,我们在做技术选型的时候无非就是做到对数据库的扬长避短。mysql最大的优势就是支持事务,事务的五大特性保证的业务可靠性,随之而来的就是事务会产生的问题:脏读、幻读、不可重复度,当然我们也会使用不同的隔离级别来解决。(最典型的业务问题:银行存取钱)
- 通义万相2.2:开启高清视频生成新纪元
Liudef06小白
特殊专栏AIGC人工智能人工智能通义万相2.2图生视频
通义万相2.2:开启高清视频生成新纪元2025年7月28日,中国AI领域迎来里程碑时刻——通义万相团队正式开源其革命性视频生成模型Wan2.2的核心权重,这标志着开源社区首次获得支持720P高清视频生成的先进模型架构。一、架构革新:混合专家系统1.1MoE视频扩散架构通义万相2.2首次将混合专家(MoE)架构引入视频扩散模型,通过双专家系统实现计算效率与模型容量的平衡:classMoEVideoD
- CodeFoeces-450B
ss5smi
题目原题链接:B.JzzhuandSequences题意根据公式公式计算对应fn的值。参考了其他作者的代码和思路。找循环点。负数取余需要加取余数到>0为止才可取余。代码#includeusingnamespacestd;constintmod=1e9+7;intmain(){longlongf[10],x,y,n;cin>>x>>y>>n;x=(x+mod)%mod;y=(y+mod)%mod;f
- 编程算法:技术创新的引擎与业务增长的核心驱动力
在数字经济时代,算法已成为推动技术创新与业务增长的隐形引擎。从存内计算突破冯·诺依曼瓶颈,到动态规划优化万亿级金融交易,编程算法正在重塑产业竞争格局。一、存内计算:突破冯·诺依曼瓶颈的算法革命1.1存内计算的基本原理传统计算架构中90%的能耗消耗在数据搬运上。存内计算(Processing-in-Memory)通过直接在存储单元执行计算,实现能效10-100倍提升:#传统计算vs存内计算能耗模型i
- 图论算法经典题目解析:DFS、BFS与拓扑排序实战
周童學
数据结构与算法深度优先算法图论
图论算法经典题目解析:DFS、BFS与拓扑排序实战图论问题是算法面试中的高频考点,本博客将通过四道LeetCode经典题目(均来自"Top100Liked"题库),深入讲解图论的核心算法思想和实现技巧。涵盖DFS、BFS、拓扑排序和前缀树等知识点,每道题配有Java实现和易错点分析。1.岛屿数量(DFS遍历)问题描述给定一个由'1'(陆地)和'0'(水)组成的二维网格,计算岛屿的数量。岛屿由水平或
- 基于redis的Zset实现作者的轻量级排名
周童學
Javaredis数据库缓存
基于redis的Zset实现轻量级作者排名系统在今天的技术架构中,Redis是一种广泛使用的内存数据存储系统,尤其在需要高效检索和排序的场景中表现优异。在本篇博客中,我们将深入探讨如何使用Redis的有序集合(ZSet)构建一个高效的笔记排行榜系统,并提供相关代码示例和详细的解析。1.功能背景与需求假设我们有一个笔记分享平台,用户可以发布各种笔记,系统需要根据用户发布的笔记数量来生成一个实时更新的
- JVM 内存分配与回收策略:从对象创建到内存释放的全流程
在JVM的运行机制中,内存分配与回收策略是连接对象生命周期与垃圾收集器的桥梁。它决定了对象在堆内存中的创建位置、存活过程中的区域迁移,以及最终被回收的时机。合理的内存分配策略能减少GC频率、降低停顿时间,是优化Java应用性能的核心环节。本文将系统解析JVM的内存分配规则、对象晋升机制,以及实战中的内存优化技巧。一、对象优先在Eden区分配:新生代的“临时缓冲区”大多数情况下,Java对象在新生代
- js操作样式
郝加升
DOM样式属性和方法:指定的元素,它的style有这么几个属性和方法:cssText:通过这个属性可以访问到元素的特性style设置的属性,并且可以直接赋值设置。removeProperty(属性名称):从样式中删除给定属性。setProperty(属性名称,值,权重):可以通过这个方法设置给定样式的同时设置其权重,可以传入”important”或者一个空字符串。获取计算后样式:window.ge
- C++ :vector的模拟
诚自然成
c++开发语言
目录一、vector的迭代器二、vector的构造函数默认构造函数参数构造函数迭代器范围构造函数拷贝构造函数swap:交换vector重载赋值符析构函数reserve:扩容vectorresize:调整大小push_back:添加元素empty:判空pop_back:后删获取大小与容量:size(),capacity()重载operator[]:元素访问insert:插入元素erase:删除一个元
- uniapp微信小程序 - 详解微信小程序平台用户授权登录全流程,uniapp v3版本中小程序端开发下用户点击登录后获取手机号/昵称/性别/头像等信息完成登录(提供完整示例代码,一键复制开箱即用)
十一猫咪爱养鱼
前端组件与功能(开箱即用)uniapp常见问题解决uniappvue3uniapp3小程序授权登录微信小程序登录获取用户信息教程获取用户昵称手机号头像信息登录vue3版本小程序平台授权登录uniap小程序端用户登录流程uni完整的小程序平台登录源码
效果图在uniapp微信小程序端开发中,超详细实现用户授权登录完整功能源码,用户授权后获取手机号/昵称/头像/性别等,提供完整思路流程及逻辑讲解。uniappVue3和Vue2都能用,你也可以直接复制粘贴,然后改下参数放到你的项目中去就行。整体思路做功能之前,先来看一下整体流程是
- mysql复习
立夏的李子
mysql数据库database
mysqlselect语法selectfromjoinwheregroupbyhavingorderbylimit联合查询innerjoin()leftjoin(以左表为基准,匹配右表,不匹配的返回左表,右表以null值填充)rightjoind··(去除列重复的数据)索引类型主键索引(PrimaryKey)唯一索引(Unique)常规索引(Index)全文索引(FullText)索引准则索引不是
- Deepseek技术深化:驱动大数据时代颠覆性变革的未来引擎
荣华富贵8
springboot搜索引擎后端缓存redis
在大数据时代,信息爆炸和数据驱动的决策逐渐重塑各行各业。作为一项前沿技术,Deepseek正在引领新一轮技术革新,颠覆传统数据处理与分析方式。本文将从理论原理、应用场景和前沿代码实践三个层面,深入剖析Deepseek技术如何为大数据时代提供颠覆性变革的解决方案。一、技术背景与核心思想1.1大数据挑战与机遇在数据量呈指数级增长的背景下,传统数据处理方法面临数据存储、计算效率和信息提取精度的诸多挑战。
- Anaconda 和 Miniconda:功能详解与选择建议
古月฿
python入门pythonconda
Anaconda和Miniconda详细介绍一、Anaconda的详细介绍1.什么是Anaconda?Anaconda是一个开源的包管理和环境管理工具,在数据科学、机器学习以及科学计算领域发挥着关键作用。它以Python和R语言为基础,为用户精心准备了大量预装库和工具,极大地缩短了搭建数据科学环境的时间。对于那些想要快速开展数据分析、模型训练等工作的人员来说,Anaconda就像是一个一站式的“数
- MySQL复习题
一.填空题1.关系数据库的标准语言是SQL。2.数据库发展的3个阶段中,数据独立性最高的是阶段数据库系统。3.概念模型中的3种基本联系分别是一对一、一对多和多对多。4.MySQL配置文件的文件名是my.ini或my.cnf。5.在MySQL配置文件中,datadir用于指定数据库文件的保存目录。6.添加IFNOTEXISTS可在创建的数据库已存在时防止程序报错。7.MySQL提供的SHOWCREA
- Qwen3 大模型实战:使用 vLLM 部署与函数调用(Function Call)全攻略
曦紫沐
大模型大模型部署Qwen3vLLM函数调用
文章摘要本文将带你从零开始,深入掌握如何使用Qwen3-8B大语言模型,结合vLLM进行高性能部署,并通过函数调用(FunctionCall)实现模型与外部工具的智能联动。我们将详细讲解部署命令、调用方式、代码示例及实际应用场景,帮助你快速构建基于Qwen3的智能应用。一、Qwen3简介与部署环境准备Qwen3是通义千问系列的最新一代大语言模型,具备强大的自然语言理解和生成能力,尤其在函数调用、工
- centos7安装配置 Anaconda3
Anaconda是一个用于科学计算的Python发行版,Anaconda于Python,相当于centos于linux。下载[root@testsrc]#mwgethttps://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/Anaconda3-5.2.0-Linux-x86_64.shBegintodownload:Anaconda3-5.2.0-L
- 大数据之路:阿里巴巴大数据实践——大数据领域建模综述
为什么需要数据建模核心痛点数据冗余:不同业务重复存储相同数据(如用户基础信息),导致存储成本激增。计算资源浪费:未经聚合的明细数据直接参与计算(如全表扫描),消耗大量CPU/内存资源。数据一致性缺失:同一指标在不同业务线的口径差异(如“活跃用户”定义不同),引发决策冲突。开发效率低下:每次分析需重新编写复杂逻辑,无法复用已有模型。数据建模核心价值性能提升:分层设计(ODS→DWD→DWS→ADS)
- Java8 Stream流的sorted()的排序【正序、倒序、多字段排序】
Tony666688888
javawindows开发语言
针对集合排序,java8可以用Stream流的sorted()进行排序。示例Bean以下我们会使用这个Bean来做示例。publicclassOrder{privateStringweight;privateDoubleprice;privateStringdateStr;//忽略getter、setter、构造方法、toString}字段排序首先是比较器Comparator,形式如下:Compa
- 量子计算解决气候变化:科学家找到了新方法
大力出奇迹985
量子计算
气候变化已成为全球面临的严峻挑战,传统计算方法在应对与之相关的复杂问题时存在诸多局限。而量子计算作为新兴技术,为解决气候变化难题带来曙光。本文深入剖析科学家利用量子计算应对气候变化的新方法。量子计算凭借独特的量子比特与量子特性,在加速气候模型计算、优化模型参数、预测极端天气事件等方面展现出巨大优势。同时,在可再生能源整合、电网管理、碳捕获等实际应用场景中也发挥着重要作用。尽管目前面临硬件和算法等方
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep