- opencv学习(图像金字塔)
蓝桉802
opencv学习人工智能
1.什么是图像金字塔图像金字塔是一种多尺度图像表示方法,通过对原始图像进行下采样(缩小)和上采样(放大),生成一系列不同分辨率的图像集合,形似“金字塔”(底部是高分辨率原始图像,向上逐渐变为低分辨率图像)。2.核心作用多尺度分析:不同分辨率的图像适用于检测不同大小的目标(如大目标在低分辨率图像中更易识别,小目标需要高分辨率)。图像融合:结合不同尺度的图像信息(如拉普拉斯金字塔可无缝融合两张图像的细
- OpenCV学习探秘之二 :数字图像的矩阵原理,OpenCV图像类与常用函数接口说明,及其常见操作核心技术详解
牵牛老人
opencv专栏opencv学习矩阵
一、图像处理基础概念1.1数字图像的矩阵如下图,这是我们看到的Lena的头像,但是计算机看来,这副图像只是一堆亮度各异的点。一副尺寸为M×N的图像可以用一个M×N的矩阵来表示,矩阵元素的值表示这个位置上的像素的亮度,一般来说像素值越大表示该点越亮。一般来说,灰度图用2维矩阵表示;彩色(多通道)图像用3维矩阵(M×N×3)表示。对于图像显示来说,目前大部分设备都是用无符号8位整数(类型为CV_8U)
- opencv学习(视频读取)
蓝桉802
opencv学习人工智能
1.cv2.COLOR_BGR2GRAY和cv2.IMREAD_GRAYSCALE的区别在OpenCV中,cv2.COLOR_BGR2GRAY和cv2.IMREAD_GRAYSCALE都与图像灰度化有关,但它们的使用场景和作用机制有所不同:cv2.IMREAD_GRAYSCALE:这是一个读取图像时使用的标志参数作用:在读取图像的同时直接将其转换为灰度图使用方式:作为cv2.imread()函数的
- opencv学习(图像处理)
目录1.图像的截取2.颜色通道的提取3.图像边界填充4.数值计算(OpenCV图像数组的算术运算与OpenCV内置加法函数)5.图像融合(两个图像只有shape值相同才能融合)6.图像阈值(通过设定一个或多个阈值,将图像中的像素值划分为不同的类别(通常是黑白两个类别),从而简化图像信息,突出感兴趣的区域。)7.图像平滑(模糊,主动降低图像清晰度,目的是去除噪声、弱化细节)(1)均值滤波(2)方框滤
- 系统学习图像算法Day.9——OpenCV学习——形态学滤波
敏而好学无止境
OpenCV学习图像算法
形态学滤波定义:在我们图像处理中的形态学,往往指的时数学形态学——是一门建立在格论和拓扑学基础上的图像分析学科。形态学基本操作:膨胀、腐蚀膨胀dilate介绍:膨胀就是求局部最大值的操作。从数学角度讲,膨胀就是讲图像与核进行卷积。核与图像卷积,即计算核覆盖的区域的像素点的最大值,并把这个最大值赋值给参考点指定的像素。这样会使图像中的高亮区域逐渐增长。函数调用举例:Matimage=imread("
- Day9: OpenCV学习(一)—— 图像基础
系列文章目录上一篇:Day8:Python工程化——模块、包文章目录系列文章目录前言一、安装和导入1.安装二、图像认识1.图像2.图像分类三、基础图像操作1.图像读取2.图像显示3.图像裁剪4.图形尺寸修改5.图像保存6.图像绘制7.视频捕获即显示总结前言OpenCV(OpenSourceComputerVisionLibrary)是一个开源的计算机视觉和机器学习软件库。由一系列C++类和函数构成
- OpenCV学习(二)-二维、三维识别
香蕉可乐荷包蛋
#OpenCVopencv学习人工智能
OpenCV是一个功能强大的计算机视觉库,可以用于识别和处理二维图像和三维图像。以下是关于二维图像和三维图像识别的基础知识和示例代码。1.二维图像识别二维图像识别通常包括图像分类、对象检测、特征提取等任务。以下是一些常见的操作:1.1图像分类使用预训练模型对图像进行分类,例如使用深度学习模型(如ResNet、MobileNet等)。importcv2#加载预训练的深度学习模型net=cv2.dnn
- Opencv学习_2 (opencv结构&显示图像)
opencv结构:1:主要包含:cxcorecvmachinelearninghighguicvcamcvaux2:cxcore:基础结构:CvPoint,CvSize,CvScalar等数组结构:cvCreateImage,cvCreateMat等动态结构:CvMemStorage,CvMemBlock等绘图函数:cvLine,cvRectangle等数据保存和运行时类型信息:CvFileSto
- 机器视觉_图像算法(六)——形状矩(Hu)
智能之心
#机器视觉_图像算法形状矩opencv
图像形状矩:一个从一幅数字图形中计算出来的矩集,通常描述了该图像形状的全局特征,并提供了大量的关于该图像不同类型的几何特性信息,比如大小、位置、方向及形状等。一阶矩与形状有关,二阶矩显示曲线围绕直线平均值的扩展程度,三阶矩则是关于平均值的对称性的测量。由二阶矩和三阶矩可以导出一组共7个不变矩。而不变矩是图像的统计特性,满足平移、伸缩、旋转均不变的不变性,在图像识别领域得到了广泛的应用。一般由mom
- opencv学习——霍夫变换原理
zqnnn
opencv
最近的项目用到了霍夫变换,感觉自己只是会调用函数,并不清楚原理,所以写这篇记录一下霍夫变换中心思想是通过坐标变换来检测直线,后来经过改进,就可以检测椭圆等将特定图形上的点变换到一组参数空间上,根据参数空间点累计的结果找到一个极大值对应的解,那么这个解就对应着要寻找的几何形状的参数(比如说直线,那么就会得到直线的斜率k与截距b,圆就会得到圆心与半径等等)。原始空间到参数空间的变换假设有一条直线L,原
- Opencv基础
大写-凌祁
opencv人工智能计算机视觉
Opencv学习基本操作察看当前摄像头importcv2#导入OpenCV库cap=cv2.VideoCapture(0)#创建一个VideoCapture对象,参数0表示使用默认的摄像头whileTrue:#循环无限执行,直到用户按下'q'键success,img=cap.read()#调用VideoCapture对象的read()方法,读取一帧画面。success变量表示读取是否成功,img表
- 【图像质量评价技术专题】-PSNR和SSIM
PixelMind
IQAIQA图像处理图像质量评价算法
最常见的图像评价指标-PSNR和SSIM专题介绍一、PSNR原理讲解代码讲解二、SSIM原理讲解代码讲解三、总结本文将介绍讲解学术界最常见的全参考图像质量评价指标,PSNR和SSIM,可以有效的对图像算法的保真度(Fidelity)进行评估。参考资料如下,其中代码实现的部分,博主准备参考一个GitHub开源的IQA集合实现,IQA-pytorch,大家也可以尝试用pip来安装IQA-pytorch
- C#Halcon从零开发_Day2_检测圆形物体上的缺损
仙贝大饼
C#联合Halcon从零编程计算机视觉图像处理c#Halcon机器视觉
一、检测缺损的大致步骤1.Blbo分析--定位读取图像、阈值分割、填充、打散、筛选、形态学操作(膨胀腐蚀)、筛选出关心的区域2获取ROI区域图像获取感兴趣的区域图像3.图像预处理将缺陷进行凸显4.图像算法处理提取缺陷5.结果输出二、检测圆形物体上的缺陷实战1.参数设置*获取窗口句柄dev_get_window(WindowHandle)*设置缺陷最小面积minDefectArea:=2002.读取
- OpenCV从零基础到精通:超详细学习路线及求职指南
小乌龟登顶记
opencv学习人工智能
摘要:本文详细拆解OpenCV从零基础到精通的学习路径,涵盖各阶段核心知识点、实战项目设计及求职技能要求,助力开发者快速成长为OpenCV领域专家。一、OpenCV学习的重要性与行业需求2023年计算机视觉岗位招聘数据显示:超过75%的CV相关岗位要求掌握OpenCV开发能力。作为计算机视觉领域的瑞士军刀,OpenCV在工业检测、自动驾驶、医学影像、AR/VR等领域广泛应用。二、OpenCV学习阶
- 计算机视觉(图像算法工程师)学习路线
陳錄生
计算机视觉学习人工智能
计算机视觉学习路线Python基础常量与变量列表、元组、字典、集合运算符循环条件控制语句函数面向对象与类包与模块Numpy+Pandas+Matplotlibnumpy机器学习回归问题线性回归Lasso回归Ridge回归多项式回归决策树回归AdaBoostGBDT随机森林回归分类问题逻辑回归决策树ID3-信息增益C4.5-信息增益率随机森林SVMNaiveBayes聚类问题K-MeansMDSCA
- OpenCV 环境搭建与概述
清醒的兰
OpenCVopencv人工智能计算机视觉
////OpenCV-4.11.0+C+++VS2019//一、OpenCV学习路线1、入门:OpenCV图像读写、视频读写、基本像素处理、基本卷积处理、基本C++开发知识。2、初级:OpenCV自定义卷积操作、图像梯度、边缘提取、二值分析、视频分析、形态学处理、几何变换与透视变换。3、中级:角点查找、BLOB查找、特征提取与匹配、机器学习、深度神经网络、CUDA加速。4、高级:掌握自定义对象检测
- opencv学习:光流估计及完整代码实现
夜清寒风
学习计算机视觉opencv人工智能
光流估计是什么?是空间运动物体在观测成像平面上的像素运动的“瞬时速度”,根据各个像素点的速度矢量特征,可以对图像进行动态分析,例如目标跟踪。基本原理(1)亮度恒定:同一点随着时间的变化,其亮度不会发生改变。(2)小运动:随着时间的变化不会引起位置的剧烈变化,只有小运动情况下才能用前后帧之间单位位置变化引起的灰度变化去近似灰度对位置的偏导数。(3)空间一致:一个场景上邻近的点投影到图像上也是邻近点,
- 时空图像算法:本文从时间序列光谱分析(TAS)的基础知识出发,详细阐述STIPS中TAS算法的原理和具体操作方法
AI天才研究院
深度学习实战自然语言处理人工智能语言模型编程实践开发语言架构设计
作者:禅与计算机程序设计艺术1.简介时空图像(ST-images)是指对空间中的多维图像进行时间编码处理后得到的时间序列图像,它在人类活动、环境变化等场景下具有广泛的应用价值。随着人们对空间的认识的提升和对地球表面所含的微生物信息的获取能力的不断增强,传感器技术的发展给人类的生活带来了前所未有的便利。在这些条件下,利用地球表面的数据、各种传感器设备及相关软件,可以实现从微观到宏观层面的全方位、高速
- 基于RK3588的GMSL、FPDLink 、VByone及MIPI等多种摄像模组,适用于车载、机器人&工业图像识别领域
深圳信迈科技DSP+ARM+FPGA
机器视觉摄像头机器人摄像模组车载相机
机器人&工业摄像头针对机器人视觉与工业检测视觉,信迈自主研发和生产GMSL、FPDLink、VByone及MIPI等多种摄像模组,并为不同应用场景提供多种视场角度和镜头。拥有资深的图像算法和图像ISP专家团队,能够在软件驱动层开发、ISP算法、FPGA算法集成能力,以及适配不同的SOC平台的各种场景ISP图像调优上,为客户提供最优质成像产品及服务。GMSL是Maxim公司推出的一种高速串行接口,适
- OpenCV学习笔记:使用OpenCV的DNN模块调用Caffe进行人脸识别
EbCoder
机器学习-深度学习
在计算机视觉和图像处理领域,人脸识别是一个重要的任务。OpenCV是一个广泛使用的开源计算机视觉库,它提供了强大的功能来处理图像和视频。OpenCV的DNN(深度神经网络)模块允许我们使用已经训练好的深度学习模型进行图像识别任务。本文将介绍如何使用OpenCV的DNN模块调用Caffe框架训练的人脸识别模型。首先,我们需要安装OpenCV和Caffe。确保您已经正确安装了这两个库,并且已经配置好了
- opencv学习:使用dlib进行人脸检测和特征点定位及完整代码实现
夜清寒风
opencv学习人工智能计算机视觉算法
dlib库是一个适用于C++和Python的第三方库。包含机器学习、计算机视觉和图像处理的工具包,被广泛的应用于机器人、嵌入式设备、移动电话和大型高性能计算环境。是开源许可用户免费使用。opencv优缺点:优点:可以在CPU上实时工作,简单的架构,可以检测不同比例的人脸。缺点:会出现大量的把非人脸预测为人脸的情况,不适用于非正面人脸图像,不抗遮挡。dlib优缺点:优点:适用于正面和略微非正面的人脸
- wav文件降噪c语言,音频降噪算法 附完整C代码
Guosheng Hu
wav文件降噪c语言
降噪是音频图像算法中的必不可少的。目的肯定是让图片或语音更加自然平滑,简而言之,美化。图像算法和音频算法都有其共通点。图像是偏向空间处理,例如图片中的某个区域。图像很多时候是以二维数据为主,矩形数据分布。音频更偏向时间处理,例如语音中的某短时长。音频一般是一维数据为主,单声道波长。处理方式也是差不多,要不单通道处理,然后合并,或者直接多通道处理。只是处理时候数据参考系维度不一而已。一般而言,图像偏
- OpenCV学习 day6 多线程
m0_71100223
opencv学习学习opencv计算机视觉
第八章线程与进程的区别:进程与单个程序类似,可以由操作系统直接执行;线程是进程的一个子集,也就是一个进程可包含多个线程;通常情况下,不同的进程彼此是无关的,而不同的线程共享内存和资源(进程可以通过操作系统提供的手段实现彼此交互)8.1Qt中的多线程Qt提供的命名空间、类和函数:QThread:所以线程的基类,可以从他的派生子类创建新的线程QThreadPool:可以用于管理线程,并且可以重用已有线
- OpenCV学习_day1
哈基米_python小白
opencv学习计算机视觉
OpenCVOpenCV基础操作读取图像显示图像保存图像绘制图形绘制直线绘制圆形绘制矩形在图像中添加文字修改图像中的像素点捕获摄像头的实时视频流资源释放OpenCV基础操作读取图像importcv2importnumpyasnp#像素是用数组存的img=cv2.imread(“图像名(例如:‘1.jpg’)”)显示图像cv2.imshow(“窗口名”,图像变量)defmy_img_show():i
- EasyDSS视频推拉流技术的应用与安防摄像机视频采集参数
EasyDSS
解决方案EasyDSS相关问题音视频开发语言服务器运维无人机
安防摄像机的视频采集参数对于确保监控系统的有效性和图像质量至关重要。这些参数不仅影响视频的清晰度和流畅度,还直接影响存储和网络传输的需求。安防摄像机图像效果的好坏,由DSP处理器和图像传感器sensor决定,如何利用好已有的硬件资源,调教出一款图像质量上佳的摄像机,和各个厂家自己的视频,图像算法,技术积累息息相关。在操作使用摄像机时,准确理解摄像机里的视频图像采集相关概念参数,将摄像机调整到最好最
- 图像算法工程师(AI算法工程师)的面试问题
小宝哥Code
Unity引擎Shader渲染算法人工智能面试
C/C++基础与数据结构算法请解释C++中智能指针的几种类型及其使用场景。C++11/14/17/20中你最常用的新特性有哪些?它们如何帮助提高代码质量?请描述vector和list的区别,以及各自适用的场景。讲解一下你理解的内存管理机制,如何避免内存泄漏?如何设计一个高效的图像数据缓存结构,考虑读写效率和内存占用?解释一下函数指针、函数对象和lambda表达式的区别和使用场景。C++中的模板元编
- opencv学习:FLANN匹配器算法实现指纹验证与指纹识别
夜清寒风
opencv学习人工智能计算机视觉
概念FLANN(FastLibraryforApproximateNearestNeighbors)是一个开源的C++库,用于在高维空间中进行近似最近邻搜索。它被广泛用于计算机视觉和机器学习领域,特别是在处理具有大量特征点的图像匹配问题时。FLANN旨在提供一个快速且灵活的近似最近邻搜索解决方案。最近邻搜索:给定一个查询点,最近邻搜索的目标是找到一个数据点,使得与查询点之间的距离最小。在特征匹配中
- opencv学习:图像轮廓识别及代码实现
夜清寒风
opencv学习人工智能算法
图像轮廓1.获取图像轮廓cv2.findContours()函数是OpenCV库中用于检测图像中轮廓的函数。它可以检测到图像中所有连通区域的边界,并返回这些轮廓的列表。从OpenCV3.4版本开始,这个函数的返回值和参数有所变化,以下是详细的参数说明:方法:contours,hierarchy=cv2.findContours(img,mode,method)参数说明img:输入图像,必须是二值图
- OpenCV学习(二十一) :计算图像连通分量:connectedComponents(),connectedComponentsWithStats()
Leon_Chen0
OpenCV
OpenCV学习(二十一):计算图像连通分量:connectedComponents(),connectedComponentsWithStats()1、connectedComponents()函数ConnectedComponents即连通体算法用id标注图中每个连通体,将连通体中序号最小的顶点的id作为连通体的id。如果在图G中,任意2个顶点之间都存在路径,那么称G为连通图,否则称该图为非连
- 基于boost的共享内存通信demo
CV工程师小朱
C++共享内存IPC通信进程通信父子进程
文章目录前言一、共享内存管理二、图像算法服务中的IPC通信流程三、demo实验结果总结前言在一个系统比较复杂的时候,将模块独立成单独的进程有助于错误定位以及异常重启恢复,不至于某个模块发生崩溃导致整个系统崩溃。当通信数据量比较大时,例如图像数据,可以使用共享内存在进程间交互,比socket快很多。下面介绍一个利用Boost.interprocess和Boost.process模块进行进程间图像数据
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">