import pandas as pd
from sklearn.linear_model import LinearRegression
from sklearn.model_selection import train_test_split
from sklearn.metrics import mean_squared_error
# 假设我们有一个包含商品销售数据的DataFrame
data = pd.DataFrame({
'item_sku_id': [100000350860, 100000350861, 100000350862, 100000350863],
'before_prefr_unit_price': [1499.0, 1599.0, 1399.0, 1299.0],
'after_prefr_unit_price': [1099.0, 1199.0, 999.0, 899.0],
'sale_qtty': [50, 60, 55, 65]
})
# 特征和目标变量
X = data[['before_prefr_unit_price', 'after_prefr_unit_price']]
y = data['sale_qtty']
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = LinearRegression()
model.fit(X_train, y_train)
# 预测
y_pred = model.predict(X_test)
# 评估模型
mse = mean_squared_error(y_test, y_pred)
print(f'Mean Squared Error: {mse}')
通过模型预测销售量,评估误差可以帮助改进定价策略。
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import accuracy_score, confusion_matrix
# 数据
data = pd.DataFrame({
'user_actual_pay_amount': [976.0, 978.99, 979.0, 800.0, 850.0],
'total_offer_amount': [400.0, 400.0, 400.0, 200.0, 250.0],
'sale_ord_valid_flag': [1, 1, 1, 0, 0]
})
X = data[['user_actual_pay_amount', 'total_offer_amount']]
y = data['sale_ord_valid_flag']
# 分割数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# 训练模型
model = LogisticRegression()
model.fit(X_train, y_train)
# 预