冻结卷积:
if freeze_epochs > 0:
model = freeze_model(model, freeze=True)
for epoch in range(epochs):
if epoch == freeze_epochs:
model = freeze_model(model, freeze=False)
optimizer.param_groups[0]['lr'] = 1e-4
model.train()
running_loss = 0.0
correct_train = 0
total_train = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
iter_loss = loss.item()
all_iter_losses.append(iter_loss)
iter_indices.append(epoch * len(train_loader) + batch_idx + 1)
running_loss += iter_loss
_, predicted = output.max(1)
total_train += target.size(0)
correct_train += predicted.eq(target).sum().item()
if (batch_idx + 1) % 100 == 0:
print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "
f"| 单Batch损失: {iter_loss:.4f}")
tensorboard:
log_dir = "runs/cifar10_cnn_exp"
if os.path.exists(log_dir):
version = 1
while os.path.exists(f"{log_dir}_v{version}"):
version += 1
log_dir = f"{log_dir}_v{version}"
writer = SummaryWriter(log_dir)
print(f"TensorBoard 日志目录: {log_dir}") # 所以第一次是cifar10_cnn_exp、第二次是cifar10_cnn_exp_v1
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, writer):
model.train()
global_step = 0
# 记录模型结构和训练图像
dataiter = iter(train_loader)
images, labels = next(dataiter)
images = images.to(device)
writer.add_graph(model, images)
img_grid = torchvision.utils.make_grid(images[:8].cpu())
writer.add_image('原始训练图像(增强前)', img_grid, global_step=0)
for epoch in range(epochs):
running_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(train_loader):
data, target = data.to(device), target.to(device)
optimizer.zero_grad()
output = model(data)
loss = criterion(output, target)
loss.backward()
optimizer.step()
# 统计准确率
running_loss += loss.item()
_, predicted = output.max(1)
total += target.size(0)
correct += predicted.eq(target).sum().item()
# 记录每个 batch 的损失、准确率和学习率
batch_acc = 100. * correct / total
writer.add_scalar('Train/Batch Loss', loss.item(), global_step)
writer.add_scalar('Train/Batch Accuracy', batch_acc, global_step)
writer.add_scalar('Train/Learning Rate', optimizer.param_groups[0]['lr'], global_step)
# 每 200 个 batch 记录一次参数直方图
if (batch_idx + 1) % 200 == 0:
for name, param in model.named_parameters():
writer.add_histogram(f'Weights/{name}', param, global_step)
if param.grad is not None:
writer.add_histogram(f'Gradients/{name}', param.grad, global_step)
global_step += 1
# 计算 epoch 级训练指标
epoch_train_loss = running_loss / len(train_loader)
epoch_train_acc = 100. * correct / total
writer.add_scalar('Train/Epoch Loss', epoch_train_loss, epoch)
writer.add_scalar('Train/Epoch Accuracy', epoch_train_acc, epoch)
# 测试阶段
model.eval()
test_loss = 0
correct_test = 0
total_test = 0
wrong_images = []
wrong_labels = []
wrong_preds = []
with torch.no_grad():
for data, target in test_loader:
data, target = data.to(device), target.to(device)
output = model(data)
test_loss += criterion(output, target).item()
_, predicted = output.max(1)
total_test += target.size(0)
correct_test += predicted.eq(target).sum().item()
# 收集错误预测样本
wrong_mask = (predicted != target)
if wrong_mask.sum() > 0:
wrong_batch_images = data[wrong_mask][:8].cpu()
wrong_batch_labels = target[wrong_mask][:8].cpu()
wrong_batch_preds = predicted[wrong_mask][:8].cpu()
wrong_images.extend(wrong_batch_images)
wrong_labels.extend(wrong_batch_labels)
wrong_preds.extend(wrong_batch_preds)
# 计算 epoch 级测试指标
epoch_test_loss = test_loss / len(test_loader)
epoch_test_acc = 100. * correct_test / total_test
writer.add_scalar('Test/Epoch Loss', epoch_test_loss, epoch)
writer.add_scalar('Test/Epoch Accuracy', epoch_test_acc, epoch)
# 可视化错误预测样本
if wrong_images:
wrong_img_grid = torchvision.utils.make_grid(wrong_images)
writer.add_image('错误预测样本', wrong_img_grid, epoch)
wrong_text = [f"真实: {classes[wl]}, 预测: {classes[wp]}"
for wl, wp in zip(wrong_labels, wrong_preds)]
writer.add_text('错误预测标签', '\n'.join(wrong_text), epoch)
# 更新学习率调度器
scheduler.step(epoch_test_loss)
print(f'Epoch {epoch+1}/{epochs} 完成 | 测试准确率: {epoch_test_acc:.2f}%')
writer.close()
return epoch_test_acc
classes = ('plane', 'car', 'bird', 'cat',
'deer', 'dog', 'frog', 'horse', 'ship', 'truck')
# 执行训练
epochs = 20
print("开始使用CNN训练模型...")
print("训练后执行: tensorboard --logdir=runs 查看可视化")
final_accuracy = train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, writer)
print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")
通道注意力:
class ChannelAttention(nn.Module):
def __init__(self, in_channels, reduction_ratio=16):
in_channels: 输入特征图的通道数
reduction_ratio: 降维比例,用于减少参数量
super(ChannelAttention, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(in_channels, in_channels // reduction_ratio, bias=False),
nn.ReLU(inplace=True),
nn.Linear(in_channels // reduction_ratio, in_channels, bias=False),
nn.Sigmoid()
)
def forward(self, x):
"""
参数:
x: 输入特征图,形状为 [batch_size, channels, height, width]
返回:
加权后的特征图,形状不变
"""
batch_size, channels, height, width = x.size()
avg_pool_output = self.avg_pool(x)
avg_pool_output = avg_pool_output.view(batch_size, channels)
channel_weights = self.fc(avg_pool_output)
channel_weights = channel_weights.view(batch_size, channels, 1, 1)
return x * channel_weights
模型定义:
class CNN(nn.Module):
def __init__(self):
super(CNN, self).__init__()
# ---------------------- 第一个卷积块 ----------------------
self.conv1 = nn.Conv2d(3, 32, 3, padding=1)
self.bn1 = nn.BatchNorm2d(32)
self.relu1 = nn.ReLU()
self.ca1 = ChannelAttention(in_channels=32, reduction_ratio=16)
self.pool1 = nn.MaxPool2d(2, 2)
# ---------------------- 第二个卷积块 ----------------------
self.conv2 = nn.Conv2d(32, 64, 3, padding=1)
self.bn2 = nn.BatchNorm2d(64)
self.relu2 = nn.ReLU()
self.ca2 = ChannelAttention(in_channels=64, reduction_ratio=16)
self.pool2 = nn.MaxPool2d(2)
# ---------------------- 第三个卷积块 ----------------------
self.conv3 = nn.Conv2d(64, 128, 3, padding=1)
self.bn3 = nn.BatchNorm2d(128)
self.relu3 = nn.ReLU()
self.ca3 = ChannelAttention(in_channels=128, reduction_ratio=16)
self.pool3 = nn.MaxPool2d(2)
# ---------------------- 全连接层(分类器) ----------------------
self.fc1 = nn.Linear(128 * 4 * 4, 512)
self.dropout = nn.Dropout(p=0.5)
self.fc2 = nn.Linear(512, 10)
def forward(self, x):
# ---------- 卷积块1处理 ----------
x = self.conv1(x)
x = self.bn1(x)
x = self.relu1(x)
x = self.ca1(x)
x = self.pool1(x)
# ---------- 卷积块2处理 ----------
x = self.conv2(x)
x = self.bn2(x)
x = self.relu2(x)
x = self.ca2(x)
x = self.pool2(x)
# ---------- 卷积块3处理 ----------
x = self.conv3(x)
x = self.bn3(x)
x = self.relu3(x)
x = self.ca3(x)
x = self.pool3(x)
# ---------- 展平与全连接层 ----------
x = x.view(-1, 128 * 4 * 4)
x = self.fc1(x)
x = self.relu3(x)
x = self.dropout(x)
x = self.fc2(x)
return x
# 重新初始化模型,包含通道注意力模块
model = CNN()
model = model.to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler.step()
scheduler = optim.lr_scheduler.ReduceLROnPlateau(
optimizer,
mode='min',
patience=3,
factor=0.5 @浙大疏锦行
)