DAY 51 复习日
作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高
kaggl的一个图像数据集;数据集地址:Lung Nodule Malignancy 肺结核良恶性判断
三层卷积CNN做到的精度63%,现在需要实现提高。
import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import torch
from torchvision import transforms
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt
# 1. 读标签并映射 0/1
df = pd.read_csv('archive/malignancy.csv')
# 2. 按 patch_id 划 train/val
ids = df['NoduleID'].values
labels = df['malignancy'].values
train_ids, val_ids = train_test_split(
ids, test_size=0.2, random_state=42, stratify=labels
)
train_df = df[df['NoduleID'].isin(train_ids)].reset_index(drop=True)
val_df = df[df['NoduleID'].isin(val_ids)].reset_index(drop=True)
# 3. Dataset:多页 TIFF 按页读取
class LungTBDataset(Dataset):
def __init__(self, tif_path, df, transform=None):
self.tif_path = tif_path
self.df = df
self.transform = transform
def __len__(self):
return len(self.df)
def __getitem__(self, idx):
row = self.df.iloc[idx]
pid = int(row['NoduleID'])
label = int(row['malignancy'])
try:
with Image.open(self.tif_path) as img:
# 检查 pid 是否超出实际帧数
total_pages = sum(1 for _ in ImageSequence.Iterator(img))
if pid >= total_pages:
pid = total_pages - 1 # 取最后一帧
img.seek(pid)
img = img.convert('RGB')
except Exception as e:
# 返回黑色占位图
img = Image.new('RGB', (224, 224), (0, 0, 0))
if self.transform:
img = self.transform(img)
return img, label
# 4. 变换 & DataLoader
transform = transforms.Compose([
transforms.Resize((224,224)),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485,0.456,0.406],
std =[0.229,0.224,0.225])
])
train_ds = LungTBDataset('archive/ct_tiles.tif', train_df, transform)
val_ds = LungTBDataset('archive/ct_tiles.tif', val_df, transform)
train_loader = DataLoader(train_ds, batch_size=16, shuffle=True, num_workers=0, pin_memory=True)
val_loader = DataLoader(val_ds, batch_size=16, shuffle=False, num_workers=0, pin_memory=True)
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models
from torch.optim.lr_scheduler import ReduceLROnPlateau
# ==================== 1. 定义VGG16-CBAM模型 ====================
class ChannelAttention(nn.Module):
def __init__(self, in_planes, ratio=16):
super().__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.max_pool = nn.AdaptiveMaxPool2d(1)
self.fc = nn.Sequential(
nn.Conv2d(in_planes, in_planes//ratio, 1, bias=False),
nn.ReLU(),
nn.Conv2d(in_planes//ratio, in_planes, 1, bias=False)
)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = self.fc(self.avg_pool(x))
max_out = self.fc(self.max_pool(x))
out = avg_out + max_out
return self.sigmoid(out)
class SpatialAttention(nn.Module):
def __init__(self, kernel_size=7):
super().__init__()
self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)
self.sigmoid = nn.Sigmoid()
def forward(self, x):
avg_out = torch.mean(x, dim=1, keepdim=True)
max_out, _ = torch.max(x, dim=1, keepdim=True)
x = torch.cat([avg_out, max_out], dim=1)
x = self.conv(x)
return self.sigmoid(x)
class CBAM(nn.Module):
def __init__(self, in_planes, ratio=16, kernel_size=7):
super().__init__()
self.ca = ChannelAttention(in_planes, ratio)
self.sa = SpatialAttention(kernel_size)
def forward(self, x):
x = x * self.ca(x)
x = x * self.sa(x)
return x
# ==== 定义VGG16-CBAM模型 ====
class VGG16_CBAM(nn.Module):
def __init__(self, num_classes=2, pretrained=True):
super().__init__()
original_vgg = models.vgg16(pretrained=pretrained)
# 特征提取部分
self.features = original_vgg.features
# 在block4和block5后插入CBAM
self.cbam_block4 = CBAM(512) # 对应block4输出
self.cbam_block5 = CBAM(512) # 对应block5输出
# 分类器部分
self.avgpool = nn.AdaptiveAvgPool2d((7, 7))
self.classifier = nn.Sequential(
nn.Linear(512 * 7 * 7, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, 4096),
nn.ReLU(True),
nn.Dropout(),
nn.Linear(4096, num_classes),
)
def forward(self, x):
# 前向传播过程
x = self.features(x)
x = self.cbam_block4(x) # 在block4后应用CBAM
x = self.cbam_block5(x) # 在block5后应用CBAM
x = self.avgpool(x)
x = torch.flatten(x, 1)
x = self.classifier(x)
return x
# ==================== 2. 训练策略配置 ====================
def set_trainable_layers(model, trainable_layers):
"""阶段式解冻层"""
for name, param in model.named_parameters():
param.requires_grad = any(layer in name for layer in trainable_layers)
def get_optimizer(model, lr_dict):
"""差异化学习率优化器"""
params = []
for name, param in model.named_parameters():
if param.requires_grad:
# 不同层组设置不同学习率
lr = lr_dict['features'] if 'features' in name else lr_dict['classifier']
params.append({'params': param, 'lr': lr})
return optim.Adam(params)
# ==================== 3. 训练流程 ====================
def train_model(model, train_loader, val_loader, num_epochs=10):
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
# 阶段式训练配置
training_phases = [
{'name': 'Phase1-Classifier', 'train_layers': ['classifier'], 'epochs': 2, 'lr': {'features': 1e-5, 'classifier': 1e-4}},
{'name': 'Phase2-Conv5+CBAM', 'train_layers': ['features.24', 'features.25', 'features.26', 'features.27', 'features.28', 'classifier'], 'epochs': 3, 'lr': {'features': 5e-5, 'classifier': 1e-4}},
{'name': 'Phase3-Conv4+CBAM', 'train_layers': ['features.16', 'features.17', 'features.18', 'features.19', 'features.20', 'features.21', 'features.22', 'features.23', 'features.24', 'features.25', 'features.26', 'features.27', 'features.28', 'classifier'], 'epochs': 3, 'lr': {'features': 1e-4, 'classifier': 1e-4}},
{'name': 'Phase4-FullModel', 'train_layers': ['features', 'classifier'], 'epochs': 2, 'lr': {'features': 2e-4, 'classifier': 1e-4}}
]
criterion = nn.CrossEntropyLoss()
best_acc = 0.0
for phase in training_phases:
print(f"\n=== {phase['name']} ===")
set_trainable_layers(model, phase['train_layers'])
optimizer = get_optimizer(model, phase['lr'])
scheduler = ReduceLROnPlateau(optimizer, mode='max', patience=1, factor=0.5)
for epoch in range(phase['epochs']):
# 训练阶段
model.train()
running_loss = 0.0
for inputs, labels in train_loader:
inputs, labels = inputs.to(device), labels.to(device)
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item() * inputs.size(0)
epoch_loss = running_loss / len(train_loader.dataset)
# 验证阶段
model.eval()
correct = 0
with torch.no_grad():
for inputs, labels in val_loader:
inputs, labels = inputs.to(device), labels.to(device)
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
correct += (preds == labels).sum().item()
epoch_acc = correct / len(val_loader.dataset)
print(f'Epoch {epoch+1}/{phase["epochs"]} - Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')
scheduler.step(epoch_acc)
# 保存最佳模型
if epoch_acc > best_acc:
best_acc = epoch_acc
# torch.save(model.state_dict(), 'best_vgg16_cbam.pth')
print(f'Best Validation Accuracy: {best_acc:.4f}')
# ==================== 4. 初始化并训练模型 ====================
model = VGG16_CBAM(num_classes=2, pretrained=True)
train_model(model, train_loader, val_loader, num_epochs=10)
@浙大疏锦行