线程安全的HashMap,底层使用sychronized+CAS+HashMap的结构(数组+链表+红黑树)实现
public class ConcurrentHashMapTest
{
public static void main(String[] args) throws InterruptedException
{
ConcurrentHashMap<Integer, Integer> map = new ConcurrentHashMap<>();
Thread thread1 = new Thread(()->{
for (int i = 0; i < 100000; i++)
{
map.put(i, i);
}
});
Thread thread2 = new Thread(()->{
for (int i = 100000; i < 200000; i++)
{
map.put(i, i);
}
});
thread1.start();
thread2.start();
thread1.join();
thread2.join();
System.out.println(map);
System.out.println(map.size());
for (int i = 0; i < 200000; i++)
{
if (!map.contains(i))
{
throw new RuntimeException("并发put有问题");//不会抛出异常说明并发put没问题
}
System.out.println(map.remove(i));
}
}
}
public class ConcurrentHashMap<K,V> extends AbstractMap<K,V>
implements ConcurrentMap<K,V>, Serializable {
private static final long serialVersionUID = 7249069246763182397L;
//最大的数组长度。必须是2的次幂
private static final int MAXIMUM_CAPACITY = 1 << 30;
//默认的数组长度。必须是2的次幂
private static final int DEFAULT_CAPACITY = 16;
//默认的加载因子。
//当数组中有元素的entry的数量>=数组长度*LOAD_FACTOR时会进行扩容
private static final float LOAD_FACTOR = 0.75f;
//当链表(不包括头节点)中元素的数目为8的时候需要转成红黑树
static final int TREEIFY_THRESHOLD = 8;
//当红黑树(不包括头节点)中元素的数目为6的时候需要转成链表
static final int UNTREEIFY_THRESHOLD = 6;
//数组中entry的数目为64的才转换成红黑树
static final int MIN_TREEIFY_CAPACITY = 64;
//-1表示正在初始化,或者是(-1+正在扩容的线程数)
//0或正数则代表hash表还未被初始化
private transient volatile int sizeCtl;
//使用volatile修饰Node数组,如果这个数组引用(不是内容)改变
//那么其他线程能立马感知(volatile的可见性)
//这个应该是扩容的时候修改Node数组会用到
transient volatile Node<K,V>[] table;
public ConcurrentHashMap() {
}
}
static class Node<K,V> implements Map.Entry<K,V> {
//final修饰key和hash表明这些是常量
//常量是线程安全的
final int hash;
final K key;
//val和next都用volatile修饰(可见性+有序性)
//配合CAS操作(原子性)就可以保证线程安全
//这也是get方法不用加锁的原因
volatile V val;
volatile Node<K,V> next;
Node(int hash, K key, V val, Node<K,V> next) {
this.hash = hash;
this.key = key;
this.val = val;
this.next = next;
}
}
public V put(K key, V value) {
//把key和value传入putVal方法
return putVal(key, value, false);
}
final V putVal(K key, V value, boolean onlyIfAbsent) {
if (key == null || value == null) throw new NullPointerException();//不允许插入null的key或者value
// (h ^ (h >>> 16)) & HASH_BITS(0x7fffffff)
int hash = spread(key.hashCode());
int binCount = 0;
//死循环配合cas
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
//如果table为空,第一次初始化table
if (tab == null || (n = tab.length) == 0)
tab = initTable();
//链表头节点为空,那么尝试cas设置头节点
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // cas设置头节点成功直接break
}
//有其他线程正在移动元素
else if ((fh = f.hash) == MOVED)
//协助其他线程扩容
tab = helpTransfer(tab, f);
//链表头节点不为空,走到这里发生了hash碰撞
else {
V oldVal = null;
//可能竞争很大,所以用synchronized加锁而不是cas
//相比于JDK7的这里锁的粒度更加小了,锁的粒度缩小为数组中每个链表的头节点
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {//头节点的hash>=0说明是个链表
binCount = 1;
//遍历链表,并且用bitCount计数链表中节点个数
for (Node<K,V> e = f;; ++binCount) {
K ek;
//找到了相等的节点,那么保存旧val,并更新val,退出循环
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
//到了尾节点,直接插入到末尾
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//如果是树的节点,那么转调树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
//判断是否需要树化
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
}
//更新数量
addCount(1L, binCount);
return null;
}
static final int spread(int h) {
//通过把hashCode的高16位和低16位异或从而让每一位都参与运算减低hash碰撞的概率
//与HASH_BITS(0x7fffffff)相与保证不会出现负数?
return (h ^ (h >>> 16)) & HASH_BITS;
}
for (Node<K,V>[] tab = table;;) {
//....
}
//如果table为空,第一次初始化table
if (tab == null || (n = tab.length) == 0)
tab = initTable();
private final Node<K,V>[] initTable() {
Node<K,V>[] tab; int sc;
//这个也是个死循环
while ((tab = table) == null || tab.length == 0) {
//sizeCtl<0表示有其他线程正在初始化或者扩容
if ((sc = sizeCtl) < 0)
//让出cpu,让扩容或者初始化的线程执行
Thread.yield(); // lost initialization race; just spin
//当前线程尝试修改sizeCtl为-1(表示正在初始化数组),成功后进入扩容逻辑
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
//第一次初始化
if ((tab = table) == null || tab.length == 0) {
//容量为16
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
//创建长度为n的Node数组
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
//sizeCtl为8
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
}
return tab;
}
//当前线程正在尝试修改sizeCtl,成功后进入扩容逻辑
else if (U.compareAndSwapInt(this, SIZECTL, sc, -1)) {
try {
//第一次初始化
if ((tab = table) == null || tab.length == 0) {
//容量为16
int n = (sc > 0) ? sc : DEFAULT_CAPACITY;
@SuppressWarnings("unchecked")
//创建长度为n的Node数组
Node<K,V>[] nt = (Node<K,V>[])new Node<?,?>[n];
table = tab = nt;
//sizeCtl为8
sc = n - (n >>> 2);
}
} finally {
sizeCtl = sc;
}
break;
}
while ((tab = table) == null || tab.length == 0) {
//sizeCtl<0表示正在初始化或者扩容
if ((sc = sizeCtl) < 0)
//让出cpu,让扩容或者初始化的线程执行
Thread.yield(); // lost initialization race; just spin
}
//链表头节点为空,
else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {
//那么尝试cas设置头节点
if (casTabAt(tab, i, null,
new Node<K,V>(hash, key, value, null)))
break; // no lock when adding to empty bin
}
首先通过(n - 1) & hash
计算元素位置。n是2的次幂,n-1的话相当于最高位是0其余位都是1,hash与整个数相与结果跟对数组长度取模一样,只不过效率更高。
然后通过UNSAFE类的CAS操作拿到该位置的元素【每个元素都是一个链表的头节点或者红黑树的根节点】
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
//通过Unsafe类取的
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
static final <K,V> boolean casTabAt(Node<K,V>[] tab, int i,
Node<K,V> c, Node<K,V> v) {
//也是通过Unsafe设置的
return U.compareAndSwapObject(tab, ((long)i << ASHIFT) + ABASE, c, v);
}
//链表头节点不为空
else {
V oldVal = null;
//可能竞争很大,所以用synchronized加锁而不是cas
//相比于JDK7的这里锁的粒度更加小了,锁的粒度缩小为数组中每个链表的头节点
//JDK7的是对segment(类似于多个链表头节点)加锁
synchronized (f) {
//头节点确实没有变化--啥时候会变化?
if (tabAt(tab, i) == f) {
if (fh >= 0) {
binCount = 1;
//遍历链表,并且用bitCount计数链表中节点个数
for (Node<K,V> e = f;; ++binCount) {
K ek;
//找到了相等的节点,那么保存旧val,并更新val,退出循环
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
oldVal = e.val;
if (!onlyIfAbsent)
e.val = value;
break;
}
Node<K,V> pred = e;
//到了尾节点,直接插入到末尾,退出循环
if ((e = e.next) == null) {
pred.next = new Node<K,V>(hash, key,
value, null);
break;
}
}
}
//如果是树的节点,那么转调树
else if (f instanceof TreeBin) {
Node<K,V> p;
binCount = 2;
if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,
value)) != null) {
oldVal = p.val;
if (!onlyIfAbsent)
p.val = value;
}
}
}
}
//判断是否需要树化
if (binCount != 0) {
if (binCount >= TREEIFY_THRESHOLD)
treeifyBin(tab, i);
if (oldVal != null)
return oldVal;
break;
}
}
看不太懂,先放着
private final void addCount(long x, int check) {
CounterCell[] as; long b, s;
if ((as = counterCells) != null ||
!U.compareAndSwapLong(this, BASECOUNT, b = baseCount, s = b + x)) {
CounterCell a; long v; int m;
boolean uncontended = true;
if (as == null || (m = as.length - 1) < 0 ||
(a = as[ThreadLocalRandom.getProbe() & m]) == null ||
!(uncontended =
U.compareAndSwapLong(a, CELLVALUE, v = a.value, v + x))) {
fullAddCount(x, uncontended);
return;
}
if (check <= 1)
return;
s = sumCount();
}
if (check >= 0) {
Node<K,V>[] tab, nt; int n, sc;
while (s >= (long)(sc = sizeCtl) && (tab = table) != null &&
(n = tab.length) < MAXIMUM_CAPACITY) {
int rs = resizeStamp(n);
if (sc < 0) {
if ((sc >>> RESIZE_STAMP_SHIFT) != rs || sc == rs + 1 ||
sc == rs + MAX_RESIZERS || (nt = nextTable) == null ||
transferIndex <= 0)
break;
if (U.compareAndSwapInt(this, SIZECTL, sc, sc + 1))
transfer(tab, nt);
}
else if (U.compareAndSwapInt(this, SIZECTL, sc,
(rs << RESIZE_STAMP_SHIFT) + 2))
transfer(tab, null);
s = sumCount();
}
}
}
public V get(Object key) {
Node<K,V>[] tab; Node<K,V> e, p; int n, eh; K ek;
//计算key的hash值
int h = spread(key.hashCode());
if ((tab = table) != null && (n = tab.length) > 0 &&
//找到第一个元素
(e = tabAt(tab, (n - 1) & h)) != null) {
//链表第一个节点就相等
if ((eh = e.hash) == h) {
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//eh是第一个元素的hash值
//hash<0指得是什么情况?表示有其他线程正在扩容
else if (eh < 0)
//find 啥用处??
return (p = e.find(h, key)) != null ? p.val : null;
//eh>=0说明是一个链表,直接遍历该链表找到相等的节点
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
}
//没有找到返回null
return null;
}
static final int spread(int h) {
//通过把hashCode的高16位和低16位异或从而让每一位都参与运算减低hash碰撞的概率
//与HASH_BITS(0x7fffffff)相与保证不会出现负数?
return (h ^ (h >>> 16)) & HASH_BITS;
}
首先通过(n - 1) & hash
计算元素位置。n是2的次幂,n-1的话相当于最高位是0其余位都是1,hash与整个数相与结果跟对数组长度取模一样,只不过效率更高。
然后通过UNSAFE类的CAS操作拿到该位置的元素【每个元素都是一个链表的头节点或者红黑树的根节点】
static final <K,V> Node<K,V> tabAt(Node<K,V>[] tab, int i) {
//通过Unsafe类取的
return (Node<K,V>)U.getObjectVolatile(tab, ((long)i << ASHIFT) + ABASE);
}
if ((eh = e.hash) == h) {//hash相等
//key引用相等或者key内容相等
if ((ek = e.key) == key || (ek != null && key.equals(ek)))
return e.val;
}
//遍历链表找到相等的节点
while ((e = e.next) != null) {
if (e.hash == h &&
((ek = e.key) == key || (ek != null && key.equals(ek))))
return e.val;
}
public V remove(Object key) {
return replaceNode(key, null, null);
}
final V replaceNode(Object key, V value, Object cv) {
int hash = spread(key.hashCode());
//死循环
for (Node<K,V>[] tab = table;;) {
Node<K,V> f; int n, i, fh;
//table为空
if (tab == null || (n = tab.length) == 0 ||
(f = tabAt(tab, i = (n - 1) & hash)) == null)
break;
//扩容
else if ((fh = f.hash) == MOVED)
tab = helpTransfer(tab, f);
else {
V oldVal = null;
boolean validated = false;
//使用synchronized加锁
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
validated = true;
//遍历链表中的每一个节点
for (Node<K,V> e = f, pred = null;;) {
K ek;
//找到了相等的节点
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
V ev = e.val;
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) {
oldVal = ev;
if (value != null)
e.val = value;
//e不是头节点,那么直接更新链表指针
else if (pred != null)
pred.next = e.next;
//e是头节点
else
setTabAt(tab, i, e.next);
}
break;
}
pred = e;
if ((e = e.next) == null)
break;
}
}
else if (f instanceof TreeBin) {
validated = true;
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> r, p;
if ((r = t.root) != null &&
(p = r.findTreeNode(hash, key, null)) != null) {
V pv = p.val;
if (cv == null || cv == pv ||
(pv != null && cv.equals(pv))) {
oldVal = pv;
if (value != null)
p.val = value;
else if (t.removeTreeNode(p))
setTabAt(tab, i, untreeify(t.first));
}
}
}
}
}
if (validated) {
if (oldVal != null) {
if (value == null)
addCount(-1L, -1);
return oldVal;
}
break;
}
}
}
return null;
}
for (Node<K,V>[] tab = table;;) {
}
//table为空
if (tab == null || (n = tab.length) == 0 ||
(f = tabAt(tab, i = (n - 1) & hash)) == null)
break;//break循环,最后返回null
else {
V oldVal = null;
boolean validated = false;
//使用synchronized加锁
synchronized (f) {
if (tabAt(tab, i) == f) {
if (fh >= 0) {
validated = true;
//遍历链表中的每一个节点
for (Node<K,V> e = f, pred = null;;) {
K ek;
//找到了相等的节点
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
V ev = e.val;
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) {
oldVal = ev;
if (value != null)
e.val = value;
//e不是头节点,那么直接更新链表指针
else if (pred != null)
pred.next = e.next;
//e是头节点
else
setTabAt(tab, i, e.next);
}
break;
}
pred = e;
if ((e = e.next) == null)
break;
}
}
else if (f instanceof TreeBin) {
validated = true;
TreeBin<K,V> t = (TreeBin<K,V>)f;
TreeNode<K,V> r, p;
if ((r = t.root) != null &&
(p = r.findTreeNode(hash, key, null)) != null) {
V pv = p.val;
if (cv == null || cv == pv ||
(pv != null && cv.equals(pv))) {
oldVal = pv;
if (value != null)
p.val = value;
else if (t.removeTreeNode(p))
setTabAt(tab, i, untreeify(t.first));
}
}
}
}
}
//遍历链表中的每一个节点
for (Node<K,V> e = f, pred = null;;) {
K ek;
//找到了相等的节点
if (e.hash == hash &&
((ek = e.key) == key ||
(ek != null && key.equals(ek)))) {
V ev = e.val;
if (cv == null || cv == ev ||
(ev != null && cv.equals(ev))) {
oldVal = ev;
if (value != null)
e.val = value;
//这个节点e不是头节点,那么直接更新前一个节点的next指针
else if (pred != null)
pred.next = e.next;
//这个节点e是头节点,那么CAS设置e.next为头节点
else
setTabAt(tab, i, e.next);
}
break;
}
pred = e;
if ((e = e.next) == null)
break;
}
static final <K,V> void setTabAt(Node<K,V>[] tab, int i, Node<K,V> v) {
U.putObjectVolatile(tab, ((long)i << ASHIFT) + ABASE, v);
}
public boolean containsKey(Object key) {
//调用get方法,也是不加锁
return get(key) != null;
}