- 涵盖轻量级锁(SpinLock)与操作系统同步原语(如 CRITICAL_SECTION)的性能优化、Monitor 的原子性和数据竞争防护、Monitor.Wait 和 Pulse 在生产者-消费者
zhxup606
C#实战教程李工篇wpf开发语言C#
涵盖轻量级锁(SpinLock)与操作系统同步原语(如CRITICAL_SECTION)的性能优化、Monitor的原子性和数据竞争防护、Monitor.Wait和Pulse在生产者-消费者中的作用、控制线程执行顺序、Thread.Join的含义、避免嵌套锁的锁顺序策略,以及防止伪唤醒的条件检查。每个问题包括核心概念、实现细节、与之前讨论的关联(如线程池、进程间同步、分布式同步)、代码示例、测试用
- yolo 目标检测600类目标
大霸王龙
行业+领域+业务场景=定制YOLO目标检测人工智能
1.模型架构调整类别适配:将YOLO输出层的类别节点数调整为600(如YOLOv5的detect.yaml中修改nc=600),并更新类别名称映射表(classes.txt)。骨干网络优化:若使用YOLOv5/v8,可升级骨干网络(如C3模块深度)或替换为更高性能的主干(如EfficientNet、ResNet-101),以增强复杂场景的特征提取能力。多尺度检测头:保留或扩展YOLO的多尺度输出(
- canvas使用滑杆交互_如何使用JavaScript和Canvas开发交互式文件上传器
cukw6666
jsjavascriptcssvuepythonViewUI
canvas使用滑杆交互介绍(Introduction)Howniceorfuncanwemaketheinteractionsonawebsiteorwebapplication?Thetruthisthatmostcouldbebetterthanwedotoday.Forexample,whowouldnotwanttouseanapplicationlikethis:我们可以在网站或Web
- 使用JavaScript和Canvas开发广告素材上载互动
culiu9261
javascriptjscsshtmlvueViewUI
Howniceorfuncanwedotheinteractionsonawebsiteorwebapplication?Thetruthisthatmostcouldbebetterthanwedotoday.Forexample,whowouldnotwanttouseanapplicationlikethis?我们可以在网站或Web应用程序上进行互动有多有趣?事实是,大多数情况可能会比今天更
- Complete Guide to Integrating Live Chat Support on Your Website
adminwolf
个人开发
Integratinglivechatfunctionalityintoyourwebsiteisapowerfulwaytoenhanceuserexperienceanddrivebusinessconversions.Thisguideprovidesstep-by-stepinstructionsonhowtoseamlesslyembedanonlineconsultationfeatu
- 每日AIGC最新进展(65):北大和快手联合提出视频生成基础大模型、香港大学提出基于物理常识的视频生成测评标准、MIT提出长纪录片生成模型
沉迷单车的追风少年
DiffusionModels与深度学习AIGC人工智能深度学习扩散模型
DiffusionModels专栏文章汇总:入门与实战PyramidalFlowMatchingforEfficientVideoGenerativeModeling本研究提出了一种高效的视频生成建模框架,称为“金字塔流匹配”(PyramidalFlowMatching)。该方法旨在解决当前视频生成模型在处理大规模时空数据时所面临的高计算和数据需求问题。传统的级联架构虽然能够减轻计算负担,但由于各
- pnpm monorepo的技术选型临界点(Critical adoption)
星野睡不醒
Webpnpmmonoreponpmjsyarn
前言直入正题。之所以要聊聊pnpm的技术选型临界点Criticaladoption,得益于一段时间以来在pnpm上的丰富实践和赋能落地积累的经验。讲道理从BDdouyin和infra团队相关开发者开始在国内推行和宣传,介入pnpm社区之后我也是对pnpm开始抱着探索的态度。当然经过一段时间的实践考究,发现pnpm只能是属于功大于过,下面我们简单聊聊。正文本文的主题是pnpmmonorepo实践,但
- YOLOv13_SSOD:基于超图关联增强的半监督目标检测框架(原创创新算法)
YOLOv13_SSOD:基于超图关联增强的半监督目标检测框架项目背景随着深度学习技术的快速发展,目标检测在各个领域都取得了显著的进展。然而,现有的监督学习方法在实际应用中面临着标注数据稀缺、泛化能力不足等挑战。特别是在火灾烟雾检测、工业质检等特定场景中,获取大量高质量标注数据的成本极高。为了解决这一问题,本项目基于最新发布的YOLOv13架构,结合EfficientTeacher半监督学习框架,
- vscode创建Python虚拟环境无法激活问题处理
系统环境win7环境,Python3.7,VScode1.70.3问题报错:PSC:\Users\Administrator\PycharmProjects\websites>.\venv\Scripts\activate无法加载文件C:\Users\Administrator\PycharmProjects\websites\venv\Scripts\Activate.ps1,因为在此系统中禁止
- YOLOv11轻量化方案的技术方案包,包含代码实现、对比图表和图文说明
zzywxc787
python深度学习机器学习
以下为YOLOv11轻量化方案的技术方案包,包含代码实现、对比图表和图文说明:一、核心轻量化方案模型结构优化(代码示例)importtorchimporttorch.nnasnnclassEfficientConv(nn.Module):"""轻量化卷积模块"""def__init__(self,in_channels,out_channels,kernel_size=3,stride=1):su
- CppCon 2018 学习:Mini Dumps Efficient core dumps for FlashBlade
虾球xz
CppCon学习c++开发语言
“MiniDumps”指的是一种精简的coredump(核心转储)机制,目的是在高性能系统(如PureStorageFlashBlade)中,在出错时收集足够的调试信息,同时避免完整coredump带来的性能开销或空间浪费。什么是CoreDump?Coredump是操作系统在程序崩溃时写出的一份进程内存快照,供开发者排查问题。但:完整coredump文件可能数百MB到数GB写出耗时长,在高性能存储
- rpg_trajectory_evaluation工具评估SLAM/VIO系统
rpg_trajectory_evaluation工具评估SLAM/VIO系统1、安装系统环境:ubuntu18.04+ROSmelodic代码:https://github.com/uzh-rpg/rpg_trajectory_evaluationtutorial:http://rpg.ifi.uzh.ch/docs/IROS18_Zhang.pdf1.1首先安装依赖的python库pipins
- 人脸检测算法——SCRFD
海绵波波107
#计算机视觉算法计算机视觉
SCRFD算法核心解析1.算法定义与背景SCRFD(SampleandComputationRedistributionforEfficientFaceDetection)由JiaGuo等人于2021年在arXiv提出,是一种高效、高精度的人脸检测算法,其核心创新在于:双重重分配策略:样本重分配(SR):动态增强关键训练阶段的样本数据。计算重分配(CR):通过神经架构搜索(NAS)优化骨干网络(B
- 14.3 FFT与PEFT终极对决:1%参数实现3倍速训练,显存暴降80%!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能机器学习大数据语言模型chatgptllama
以微调权重比例分类:FFTvsPEFT深度解析在大模型微调领域,参数调整比例直接决定训练效率与模型性能的平衡。本小节将深入解析全参数微调(FullFine-Tuning,FFT)与参数高效微调(Parameter-EfficientFine-Tuning,PEFT)的核心差异,并通过具体技术方案对比和实战代码示例揭示其工程应用场景。一、FFT与PEFT技术对比矩阵
- 2020-04-29 eMAGMA 基于基因的关联分析(Part1)
程凉皮儿
输入数据准备本教程要求eMAGMA文件,软件(MAGMA)和辅助文件都在同一个目录下如果你的文件在不同的目录上,请在命令行加入路径信息cd/path/yourworkingfolder/eMAGMA解压缩软件包及辅助文件:magma_v1.07b.zip,NCBI37.3.zip和MDD2018_excluding23andMe(下载自PGCwebsite).unzip[filename].zip
- 【深度学习实战】当前三个最佳图像分类模型的代码详解
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型机器学习TransformerEfficientNetConvNeXt
下面给出三个在当前图像分类任务中精度表现突出的模型示例,分别基于SwinTransformer、EfficientNet与ConvNeXt。每个模型均包含:训练代码(使用PyTorch)从预训练权重开始微调(也可注释掉预训练选项,从头训练)数据集目录结构:└──dataset_root├──buy#第一类图像└──nobuy#第二类图像随机拆分:80%训练,20%验证每个Epoch输出一次loss
- TCYB_双层优化问题下进化算法的高效建模方法
爱看论文的小小马喽
算法
EfficientSurrogateModelingMethodforEvolutionaryAlgorithmtoSolveBilevelOptimizationProblems作者:HaoJiang,KangChou,YeTian,XingyiZhang,SeniorMember,IEEE,andYaochuJin,Fellow,IEEE动机/要解决的问题:上层问题的解决取决于相应下层问题的最
- 【无标题】
锅挤
算法数据结构
#include#includetypedefstructLinkNode{intcoefficient;intexponent;structLinkNode*next;}*LinkList,*NodePtr;LinkListinitLinkList(){LinkListtempHeader=(LinkList)malloc(sizeof(structLinkNode));tempHeader->
- 论文略读: Fast-DetectGPT: Efficient Zero-Shot Detection of Machine-Generated Text via Conditional Probab
UQI-LIUWJ
论文笔记人工智能
ICLR2024判断生成的文本是人写的还是大模型写的现有的检测器主要分为两类有监督分类器在训练领域表现出色,但在面对来自不同领域或不熟悉模型生成的文本时表现变差零样本分类器免疫领域特定的退化在检测精度上可以与有监督分类器相当但目前的方法计算成本高、计算时间长——>提出了一种新的假设来检测机器生成的文本人类和机器在给定上下文的情况下选择词汇存在明显的差异人类的选择比较多样,而机器更倾向于选择具有更高
- 卷积神经网络架构的演进:从AlexNet到EfficientNet
t0_54manong
大数据与人工智能cnn架构人工智能个人开发
在过去的8.5年里,深度学习取得了飞速的进步。回溯到2012年,AlexNet在ImageNet上的Top-1准确率仅为63.3%,而如今,借助EfficientNet架构和师生训练法,我们已经能达到超过90%的准确率。本文将聚焦于卷积神经网络(CNN)架构的演变,深入探究其背后的基本原理。一些关键术语在深入了解各种架构之前,我们需要明确几个关键术语。更宽的网络意味着卷积层中有更多的特征图(滤波器
- (六)零代码封装pytest框架(日志封装)
OY-xin
接口测试(零代码pytest)pytest
三步解决日志封装(使用pytest自带日志模块)第一步:在pytest.ini中配置日志格式#日志配置#日志导出文件log_file=./logs/frame.log#日志级别:DEBUG,INFO,WARNING,ERROR,CRITICAL(逐级变高,选级后不会显示比所选级别低的)log_file_level=INFO#日志格式log_file_format=%(asctime)s%(leve
- TPAMI 2024 | 利用相机原始快照进行高效的视觉计算
小白学视觉
论文解读IEEETPAMI数码相机TPAMI深度学习顶刊论文论文解读
题目:EfficientVisualComputingWithCameraRAWSnapshots利用相机原始快照进行高效的视觉计算作者:ZhihaoLi;MingLu;XuZhang;XinFeng;M.SalmanAsif;ZhanMa源码链接:https://njuvision.github.io/rho-vision摘要传统相机在传感器上捕获图像辐照度(RAW),并使用图像信号处理器(IS
- 图像哈希:DCT篇
怪味&先森
科研篇:图像哈希哈希算法opencv计算机视觉
RobustimagehashingwithdominantDCTcoefficients文章信息作者:唐振军期刊:Optic(Q2/3区)题目:RobustimagehashingwithdominantDCTcoefficients目的、实验步骤及结论目的:使用传统的DCT对图像进行压缩,由于压缩后的信息主要集中在左上角,因此使用左上角的数据进行比较生成图像的哈希值。实验步骤数据预处理:双线性
- 探索未来软件构建的高效工具:pnpm
孔岱怀
探索未来软件构建的高效工具:pnpmpnpmFast,diskspaceefficientpackagemanager项目地址:https://gitcode.com/gh_mirrors/pn/pnpm在快速发展的前端世界中,高效的包管理器是开发人员不可或缺的工具。pnpm,一款基于内容寻址文件系统的包管理器,以其独特的设计理念和卓越的性能,为开发者带来了全新的体验。让我们一起深入了解这个项目,
- Python日志模块
Python日志模块学习教程:b站王铭东老师Python中logging模块能够完成相关信息的记录,在debug时使用它事半功倍一、模块介绍日志级别DEBUG、INFO、WARNING、ERROR、CRITICAL默认是WARNING,当在WARNING或其之上时才被跟踪日志格式logging.basicConfig函数中,可以指定日志的输出格式format,这个参数可以输出很多有用的信息一般使用
- Python operator - Standard operators as functions
Yongqiang Cheng
Python3-Python2-CythonPythonoperatoroperatorsfunctions
Pythonoperator-Standardoperatorsasfunctions1.MappingOperatorstoFunctions2.In-placeOperatorsReferenceshttps://docs.python.org/3/library/operator.htmlTheoperatormoduleexportsasetofefficientfunctionscorr
- 【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等
十小大
超分辨率重建(理论+实战科研+应用)超分辨率重建人工智能图像处理深度学习计算机视觉图像超分pytorch
文章目录专栏简介专栏亮点适配人群相关说明关于答疑环境配置超分理解实现流程文章目录基础知识三个常用的SR框架数据集相关可解释性(论文中的可视化说明)图像超分(ImageSuper-Resolution)经典超分(ClassicalSR)任意尺度超分(Arbitrary-ScaleSR)高效/轻量化超分(Efficient/LightweightSR,ESR)盲超分/真实世界图像超分辨率(Blind/
- 【小米App】AndroidStudio开发打开指定网站的应用示例
Botiway
移动APPwindowskotlinandroidstudiolinuxpython
AndroidStudio开发打开指定网站的应用示例下面我将为你展示如何使用AndroidStudio创建一个简单的应用,点击按钮后打开指定的网站。1.创建新项目打开AndroidStudio选择“StartanewAndroidStudioproject”选择“EmptyActivity”模板设置项目名称(如“OpenWebsiteApp”)、包名和保存位置选择语言(Kotlin或Java,本示
- py每日spider案例之某website之古籍搜索
我不是程序员~~~~
爬虫项目实战py
importrequestsheaders={"accept":"application/json,text/plain,*/*","accept-language":"zh-CN,zh;q=0.9","cache-control":"no-cache","cont
- 6,FreeRTOS临界区代码保护与任务调度器的挂起与恢复
自激振荡器
FreeRTOS学习笔记单片机stm32嵌入式硬件freeRTOSFreeRTOS
一、临界区代码保护如果我们想在执行某段代码时不被中断打断,此时需要进行临界区代码保护。在临界区内关闭中断,临界区结束后开启中断。需要注意的是临界区的进入和退出需要成对出现,如果进入两次,那么需要退出两次才可以成功开启中断。注:本实验基于正点原子FreeRTOS教程的学习总结。1..所需API函数介绍taskENTER_CRITICAL函数用来进入临界区。在任务中调用。#definetaskENTE
- Java实现的简单双向Map,支持重复Value
superlxw1234
java双向map
关键字:Java双向Map、DualHashBidiMap
有个需求,需要根据即时修改Map结构中的Value值,比如,将Map中所有value=V1的记录改成value=V2,key保持不变。
数据量比较大,遍历Map性能太差,这就需要根据Value先找到Key,然后去修改。
即:既要根据Key找Value,又要根据Value
- PL/SQL触发器基础及例子
百合不是茶
oracle数据库触发器PL/SQL编程
触发器的简介;
触发器的定义就是说某个条件成立的时候,触发器里面所定义的语句就会被自动的执行。因此触发器不需要人为的去调用,也不能调用。触发器和过程函数类似 过程函数必须要调用,
一个表中最多只能有12个触发器类型的,触发器和过程函数相似 触发器不需要调用直接执行,
触发时间:指明触发器何时执行,该值可取:
before:表示在数据库动作之前触发
- [时空与探索]穿越时空的一些问题
comsci
问题
我们还没有进行过任何数学形式上的证明,仅仅是一个猜想.....
这个猜想就是; 任何有质量的物体(哪怕只有一微克)都不可能穿越时空,该物体强行穿越时空的时候,物体的质量会与时空粒子产生反应,物体会变成暗物质,也就是说,任何物体穿越时空会变成暗物质..(暗物质就我的理
- easy ui datagrid上移下移一行
商人shang
js上移下移easyuidatagrid
/**
* 向上移动一行
*
* @param dg
* @param row
*/
function moveupRow(dg, row) {
var datagrid = $(dg);
var index = datagrid.datagrid("getRowIndex", row);
if (isFirstRow(dg, row)) {
- Java反射
oloz
反射
本人菜鸟,今天恰好有时间,写写博客,总结复习一下java反射方面的知识,欢迎大家探讨交流学习指教
首先看看java中的Class
package demo;
public class ClassTest {
/*先了解java中的Class*/
public static void main(String[] args) {
//任何一个类都
- springMVC 使用JSR-303 Validation验证
杨白白
springmvc
JSR-303是一个数据验证的规范,但是spring并没有对其进行实现,Hibernate Validator是实现了这一规范的,通过此这个实现来讲SpringMVC对JSR-303的支持。
JSR-303的校验是基于注解的,首先要把这些注解标记在需要验证的实体类的属性上或是其对应的get方法上。
登录需要验证类
public class Login {
@NotEmpty
- log4j
香水浓
log4j
log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, HTML, DATABASE
#log4j.rootCategory=DEBUG, STDOUT, DAILYFILE, ROLLINGFILE, HTML
#console
log4j.appender.STDOUT=org.apache.log4j.ConsoleAppender
log4
- 使用ajax和history.pushState无刷新改变页面URL
agevs
jquery框架Ajaxhtml5chrome
表现
如果你使用chrome或者firefox等浏览器访问本博客、github.com、plus.google.com等网站时,细心的你会发现页面之间的点击是通过ajax异步请求的,同时页面的URL发生了了改变。并且能够很好的支持浏览器前进和后退。
是什么有这么强大的功能呢?
HTML5里引用了新的API,history.pushState和history.replaceState,就是通过
- centos中文乱码
AILIKES
centosOSssh
一、CentOS系统访问 g.cn ,发现中文乱码。
于是用以前的方式:yum -y install fonts-chinese
CentOS系统安装后,还是不能显示中文字体。我使用 gedit 编辑源码,其中文注释也为乱码。
后来,终于找到以下方法可以解决,需要两个中文支持的包:
fonts-chinese-3.02-12.
- 触发器
baalwolf
触发器
触发器(trigger):监视某种情况,并触发某种操作。
触发器创建语法四要素:1.监视地点(table) 2.监视事件(insert/update/delete) 3.触发时间(after/before) 4.触发事件(insert/update/delete)
语法:
create trigger triggerName
after/before 
- JS正则表达式的i m g
bijian1013
JavaScript正则表达式
g:表示全局(global)模式,即模式将被应用于所有字符串,而非在发现第一个匹配项时立即停止。 i:表示不区分大小写(case-insensitive)模式,即在确定匹配项时忽略模式与字符串的大小写。 m:表示
- HTML5模式和Hashbang模式
bijian1013
JavaScriptAngularJSHashbang模式HTML5模式
我们可以用$locationProvider来配置$location服务(可以采用注入的方式,就像AngularJS中其他所有东西一样)。这里provider的两个参数很有意思,介绍如下。
html5Mode
一个布尔值,标识$location服务是否运行在HTML5模式下。
ha
- [Maven学习笔记六]Maven生命周期
bit1129
maven
从mvn test的输出开始说起
当我们在user-core中执行mvn test时,执行的输出如下:
/software/devsoftware/jdk1.7.0_55/bin/java -Dmaven.home=/software/devsoftware/apache-maven-3.2.1 -Dclassworlds.conf=/software/devs
- 【Hadoop七】基于Yarn的Hadoop Map Reduce容错
bit1129
hadoop
运行于Yarn的Map Reduce作业,可能发生失败的点包括
Task Failure
Application Master Failure
Node Manager Failure
Resource Manager Failure
1. Task Failure
任务执行过程中产生的异常和JVM的意外终止会汇报给Application Master。僵死的任务也会被A
- 记一次数据推送的异常解决端口解决
ronin47
记一次数据推送的异常解决
需求:从db获取数据然后推送到B
程序开发完成,上jboss,刚开始报了很多错,逐一解决,可最后显示连接不到数据库。机房的同事说可以ping 通。
自已画了个图,逐一排除,把linux 防火墙 和 setenforce 设置最低。
service iptables stop
- 巧用视错觉-UI更有趣
brotherlamp
UIui视频ui教程ui自学ui资料
我们每个人在生活中都曾感受过视错觉(optical illusion)的魅力。
视错觉现象是双眼跟我们开的一个玩笑,而我们往往还心甘情愿地接受我们看到的假象。其实不止如此,视觉错现象的背后还有一个重要的科学原理——格式塔原理。
格式塔原理解释了人们如何以视觉方式感觉物体,以及图像的结构,视角,大小等要素是如何影响我们的视觉的。
在下面这篇文章中,我们首先会简单介绍一下格式塔原理中的基本概念,
- 线段树-poj1177-N个矩形求边长(离散化+扫描线)
bylijinnan
数据结构算法线段树
package com.ljn.base;
import java.util.Arrays;
import java.util.Comparator;
import java.util.Set;
import java.util.TreeSet;
/**
* POJ 1177 (线段树+离散化+扫描线),题目链接为http://poj.org/problem?id=1177
- HTTP协议详解
chicony
http协议
引言
- Scala设计模式
chenchao051
设计模式scala
Scala设计模式
我的话: 在国外网站上看到一篇文章,里面详细描述了很多设计模式,并且用Java及Scala两种语言描述,清晰的让我们看到各种常规的设计模式,在Scala中是如何在语言特性层面直接支持的。基于文章很nice,我利用今天的空闲时间将其翻译,希望大家能一起学习,讨论。翻译
- 安装mysql
daizj
mysql安装
安装mysql
(1)删除linux上已经安装的mysql相关库信息。rpm -e xxxxxxx --nodeps (强制删除)
执行命令rpm -qa |grep mysql 检查是否删除干净
(2)执行命令 rpm -i MySQL-server-5.5.31-2.el
- HTTP状态码大全
dcj3sjt126com
http状态码
完整的 HTTP 1.1规范说明书来自于RFC 2616,你可以在http://www.talentdigger.cn/home/link.php?url=d3d3LnJmYy1lZGl0b3Iub3JnLw%3D%3D在线查阅。HTTP 1.1的状态码被标记为新特性,因为许多浏览器只支持 HTTP 1.0。你应只把状态码发送给支持 HTTP 1.1的客户端,支持协议版本可以通过调用request
- asihttprequest上传图片
dcj3sjt126com
ASIHTTPRequest
NSURL *url =@"yourURL";
ASIFormDataRequest*currentRequest =[ASIFormDataRequest requestWithURL:url];
[currentRequest setPostFormat:ASIMultipartFormDataPostFormat];[currentRequest se
- C语言中,关键字static的作用
e200702084
C++cC#
在C语言中,关键字static有三个明显的作用:
1)在函数体,局部的static变量。生存期为程序的整个生命周期,(它存活多长时间);作用域却在函数体内(它在什么地方能被访问(空间))。
一个被声明为静态的变量在这一函数被调用过程中维持其值不变。因为它分配在静态存储区,函数调用结束后并不释放单元,但是在其它的作用域的无法访问。当再次调用这个函数时,这个局部的静态变量还存活,而且用在它的访
- win7/8使用curl
geeksun
win7
1. WIN7/8下要使用curl,需要下载curl-7.20.0-win64-ssl-sspi.zip和Win64OpenSSL_Light-1_0_2d.exe。 下载地址:
http://curl.haxx.se/download.html 请选择不带SSL的版本,否则还需要安装SSL的支持包 2. 可以给Windows增加c
- Creating a Shared Repository; Users Sharing The Repository
hongtoushizi
git
转载自:
http://www.gitguys.com/topics/creating-a-shared-repository-users-sharing-the-repository/ Commands discussed in this section:
git init –bare
git clone
git remote
git pull
git p
- Java实现字符串反转的8种或9种方法
Josh_Persistence
异或反转递归反转二分交换反转java字符串反转栈反转
注:对于第7种使用异或的方式来实现字符串的反转,如果不太看得明白的,可以参照另一篇博客:
http://josh-persistence.iteye.com/blog/2205768
/**
*
*/
package com.wsheng.aggregator.algorithm.string;
import java.util.Stack;
/**
- 代码实现任意容量倒水问题
home198979
PHP算法倒水
形象化设计模式实战 HELLO!架构 redis命令源码解析
倒水问题:有两个杯子,一个A升,一个B升,水有无限多,现要求利用这两杯子装C
- Druid datasource
zhb8015
druid
推荐大家使用数据库连接池 DruidDataSource. http://code.alibabatech.com/wiki/display/Druid/DruidDataSource DruidDataSource经过阿里巴巴数百个应用一年多生产环境运行验证,稳定可靠。 它最重要的特点是:监控、扩展和性能。 下载和Maven配置看这里: http
- 两种启动监听器ApplicationListener和ServletContextListener
spjich
javaspring框架
引言:有时候需要在项目初始化的时候进行一系列工作,比如初始化一个线程池,初始化配置文件,初始化缓存等等,这时候就需要用到启动监听器,下面分别介绍一下两种常用的项目启动监听器
ServletContextListener
特点: 依赖于sevlet容器,需要配置web.xml
使用方法:
public class StartListener implements
- JavaScript Rounding Methods of the Math object
何不笑
JavaScriptMath
The next group of methods has to do with rounding decimal values into integers. Three methods — Math.ceil(), Math.floor(), and Math.round() — handle rounding in differen